LIST OF FIGURES

Fig. 1. Schematic representation of human serum albumin molecule 3
Fig. 2. Schematic representation of potential pathway leading to AGE formation 7
Fig. 3. Schematic representation of enzymatic antioxidants and glutathione 16
Fig. 4. SDS-PAGE of native and modified HSA samples 41
Fig. 5. UV absorption spectra of native and modified HSA samples 42
Fig. 6. Fluorescence spectra of native and modified HSA samples 43
Fig. 7. Tryptophan specific fluorescence spectra of native and modified HSA samples 45
Fig. 8. Circular dichroic spectra of native and modified HSA samples 46
Fig. 9. Thermal denaturation profile of native and modified HSA samples 49
Fig. 10. Level of ketoamines in native and modified HSA samples 52
Fig. 11. Determination of carbonyls in native and modified HSA samples 53
Fig. 12. Number of free amino groups in native and modified HSA samples 54
Fig. 13. Effect of free radical scavengers and antioxidants on the glucose modification of HSA samples 56
Fig. 14. Effect of free radical scavengers and antioxidants on ROS-induced modification of glycated HSA 57
Fig. 15. Direct binding ELISA of native HSA with preimmune and immune sera 59
Fig. 16. Inhibition ELISA of preimmune and immune sera with native HSA 60
Fig. 17. Ouchterlony double immunodiffusion of anti-native HSA antibodies with native HSA 61
Fig. 18. Elution profile of anti-native HSA IgG on Protein-A Agarose column 62
Fig. 19. Binding of affinity purified anti-native HSA immune IgG and preimmune IgG to native HSA 63
Fig. 20. Band shift assay of anti-native HSA IgG binding to native HSA

Fig. 21. Direct binding ELISA of glycated HSA with preimmune and immune sera

Fig. 22. Inhibition ELISA of preimmune and immune sera with glycated HSA

Fig. 23. Ouchterlony double immunodiffusion of anti-glycated HSA antibodies with glycated HSA

Fig. 24. Elution profile of anti-glycated HSA IgG on Protein-A Agarose column

Fig. 25. Binding of affinity purified anti-glycated HSA immune IgG and preimmune IgG to glycated HSA

Fig. 26. Band shift assay of anti-glycated HSA IgG binding to glycated HSA

Fig. 27. Direct binding ELISA of ROS-glycated HSA with preimmune and immune sera

Fig. 28. Inhibition ELISA of preimmune and immune sera with ROS-glycated HSA

Fig. 29. Ouchterlony double immunodiffusion of anti-ROS-glycated HSA antibodies with ROS-glycated HSA

Fig. 30. Elution profile of anti-ROS-glycated HSA IgG on Protein-A Agarose column

Fig. 31. Binding of affinity purified anti-ROS-glycated HSA immune IgG and preimmune IgG to ROS-glycated HSA

Fig. 32. Band shift assay of anti-ROS-glycated HSA IgG binding to ROS-glycated HSA

Fig. 33 (a). Inhibition of anti-native HSA IgG binding to native HSA by native, glycated and ROS-glycated HSA
(b). Inhibition of anti-native HSA IgG binding to native HSA by native, glycated and ROS-glycated HSA

Fig. 34 (a). Inhibition of anti-native HSA IgG binding to native HSA by native, glycated and ROS-glycated BSA
(b). Inhibition of anti-native HSA IgG binding to native HSA by native, glycated and ROS-glycated poly-L lysine

Fig. 35 (a). Inhibition of anti-native HSA IgG binding to native HSA by ROS-HSA and fructated HSA
(b). Inhibition of anti-glycated HSA IgG binding to native HSA by glycated HSA (20 weeks) and native plasmid DNA
Fig. 36 (a). Inhibition of anti-glycated HSA IgG binding to glycated HSA by native, glycated and ROS-glycated HSA
(b). Inhibition of anti-glycated HSA IgG binding to glycated HSA by native, glycated and ROS-glycated IgG

Fig. 37 (a). Inhibition of anti-glycated HSA IgG binding to glycated HSA by native, glycated and ROS-glycated BSA
(b). Inhibition of anti-glycated HSA IgG binding to glycated HSA by native, glycated and ROS-glycated poly-L lysine

Fig. 38 (a). Inhibition of anti-glycated HSA IgG binding to glycated HSA by ROS-HSA and fructated HSA
(b). Inhibition of anti-glycated HSA IgG binding to glycated HSA by glycated HSA (20 weeks) and native plasmid DNA

Fig. 39 (a). Inhibition of anti-ROS-glycated HSA IgG binding to ROS-glycated HSA by native, glycated and ROS-glycated HSA
(b). Inhibition of anti-ROS-glycated HSA IgG binding to ROS-glycated HSA by native, glycated and ROS-glycated IgG

Fig. 40 (a). Inhibition of anti-ROS-glycated HSA IgG binding to ROS-glycated HSA by native, glycated and ROS-glycated BSA
(b). Inhibition of anti-ROS-glycated HSA IgG binding to ROS-glycated HSA by native, glycated and ROS-glycated poly-L lysine

Fig. 41 (a). Inhibition of anti-ROS-glycated HSA IgG binding to ROS-glycated HSA by ROS-HSA and fructated HSA
(b). Inhibition of anti-ROS-glycated HSA IgG binding to ROS-glycated HSA by glycated HSA (20 weeks) and native plasmid DNA

Fig. 42. Binding of various diabetic sera to native, glycated and ROS-glycated HSA

Fig. 43 (a). Inhibition of diabetic sera (1 and 2) binding by native and glycated HSA
(b). Inhibition of diabetic sera (3 and 4) binding by native and glycated HSA

Fig. 44 (a). Inhibition of diabetic sera (5 and 6) binding by native and glycated HSA
(b). Inhibition of diabetic sera (7 and 8) binding by native and glycated HSA
Fig. 45 (a). Inhibition of diabetic sera (9 and 10) binding by native and glycated HSA
(b). Inhibition of diabetic sera (11 and 12) binding by native and glycated HSA

Fig. 46 (a). Inhibition of diabetic sera (13 and 14) binding by native and glycated HSA
(b). Inhibition of diabetic sera (15 and 16) binding by native and glycated HSA

Fig. 47 (a). Inhibition of diabetic sera (17 and 18) binding by native and glycated HSA
(b). Inhibition of diabetic sera (19 and 20) binding by native and glycated HSA

Fig. 48 (a). Inhibition of diabetic sera (21 and 22) binding by native and glycated HSA
(b). Inhibition of diabetic sera (23 and 24) binding by native and glycated HSA

Fig. 49 (a). Inhibition of normal and diabetic retinopathic subject’s serum against native and glycated HSA
(b). Inhibition of diabetic retinopathic sera (2 and 3) against native and glycated HSA

Fig. 50 (a). Inhibition of normal and diabetic artherosclerotic subject’s serum against native and glycated HSA
(b). Inhibition of diabetic artherosclerotic sera (2 and 3) against native and glycated HSA

Fig. 51 (a). Inhibition of normal and diabetic nephropathic subject’s serum against native and glycated HSA
(b). Inhibition of diabetic nephropathic sera (2 and 3) against native and glycated HSA

Fig. 52 (a). Inhibition of diabetic sera (1 and 2) binding by native and ROS-glycated HSA
(b). Inhibition of diabetic sera (3 and 4) binding by native and ROS-glycated HSA

Fig. 53 (a). Inhibition of diabetic sera (5 and 6) binding by native and ROS-glycated HSA
(b). Inhibition of diabetic sera (7 and 8) binding by native and ROS-glycated HSA
Fig. 54 (a). Inhibition of diabetic sera (9 and 10) binding by native and ROS-glycated HSA
(b). Inhibition of diabetic sera (11 and 12) binding by native and ROS-glycated HSA

Fig. 55 (a). Inhibition of diabetic sera (13 and 14) binding by native and ROS-glycated HSA
(b). Inhibition of diabetic sera (15 and 16) binding by native and ROS-glycated HSA

Fig. 56 (a). Inhibition of diabetic sera (17 and 18) binding by native and ROS-glycated HSA
(b). Inhibition of diabetic sera (19 and 20) binding by native and ROS-glycated HSA

Fig. 57 (a). Inhibition of diabetic sera (21 and 22) binding by native and ROS-glycated HSA
(b). Inhibition of diabetic sera (23 and 24) binding by native and ROS-glycated HSA

Fig. 58 (a). Inhibition of normal and diabetic retinopathic subject’s serum against native and ROS-glycated HSA
(b). Inhibition of diabetic retinopathic sera (2 and 3) against native and ROS-glycated HSA

Fig. 59 (a). Inhibition of normal and diabetic nephropathic subject’s serum against native and ROS-glycated HSA
(b). Inhibition of diabetic nephropathic sera (2 and 3) against native and ROS-glycated HSA

Fig. 60 (a). Inhibition of normal and diabetic artherosclerotic subject’s serum against native and ROS-glycated HSA
(b). Inhibition of diabetic artherosclerotic sera (2 and 3) against native and ROS-glycated HSA

Fig. 61. Elution profile of diabetic patient’s IgG on Protein-A Agarose affinity column
Fig. 62. Band shift assay of diabetic patient’s IgG binding to glycated HSA
Fig. 63. Band shift assay of diabetic patient’s IgG binding to ROS-glycated HSA
Fig. 64. Gel filtration column chromatography of commercially available HSA and serum isolated albumin
Fig. 65. Elution profile of IgG isolated from normal and diabetic subjects sera on Protein A-Agarose affinity column
Fig. 66 (a). Inhibition of anti-glycated IgG binding to glycated HSA by serum isolated albumin

(b). Inhibition of anti-glycated IgG binding to glycated HSA by serum isolated IgG

Fig. 67 (a). Inhibition of anti-ROS-glycated IgG binding to ROS-glycated HSA by serum isolated albumin

(b). Inhibition of anti-ROS-glycated IgG binding to ROS-glycated HSA by serum isolated IgG

Fig. 68. Binding of various rheumatoid arthritic sera to native, glycated and ROS-glycated HSA

Fig. 69 (a). Inhibition of rheumatoid arthritic autoantibodies (patient 1 and 2) binding by native, glycated and ROS-glycated HSA

(b). Inhibition of rheumatoid arthritic autoantibodies (patient 3 and 4) binding by native, glycated and ROS-glycated HSA

Fig. 70 (a). Inhibition of rheumatoid arthritic autoantibodies (patient 5 and 6) binding by native, glycated and ROS-glycated HSA

(b). Inhibition of rheumatoid arthritic autoantibodies (patient 7 and 8) binding by native, glycated and ROS-glycated HSA

Fig. 71 (a). Inhibition of rheumatoid arthritic autoantibodies (patient 9 and 10) binding by native, glycated and ROS-glycated HSA

(b). Inhibition of rheumatoid arthritic autoantibodies (patient 11 and 12) binding by native, glycated and ROS-glycated HSA

Fig. 72. Elution profile of rheumatoid arthritic patient’s IgG on Protein A-Agarose affinity column

Fig. 73. Band shift assay of rheumatoid arthritic patient’s IgG binding to glycated HSA

Fig. 74. Band shift assay of rheumatoid arthritic patient’s IgG binding to ROS-glycated HSA