List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Circular diagram of HPV-16 genome and open reading frames</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2</td>
<td>The course of events that, over time, can lead to the development of precancerous and cancerous cervical tumors</td>
<td>4</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Processes involved in HPV-induced carcinogenesis</td>
<td>7</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Stimulation of cell-cycle progression by high-risk HPV types</td>
<td>8</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Bioconversion pathway of Garlic Organosulfur Compounds</td>
<td>17</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Chemical reactions in processed Allium vegetables and generation of organosulfur compounds</td>
<td>18</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Chemical structures of widely studied natural organosulfur compounds</td>
<td>19</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Schematic representation of the intrinsic and extrinsic apoptotic pathways</td>
<td>32</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Schematic representation of mitochondrial membrane permeabilization</td>
<td>33</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Glutathione biochemistry and intracellular pools</td>
<td>41</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Dose dependent inhibition of growth of cervical cancer HeLa cells treated with Allicin for 24 hour assessed by MTT assay</td>
<td>58</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Dose dependent inhibition of growth of cervical cancer HeLa cells treated with Allicin for 48 hour assessed by MTT assay</td>
<td>59</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Dose dependent inhibition of growth of cervical cancer HeLa cells treated with Allicin for 24 hour assessed by Trypan Blue dye exclusion assay</td>
<td>60</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Dose dependent inhibition of growth of cervical cancer HeLa cells treated with Allicin for 48 hour assessed by Trypan Blue dye exclusion assay</td>
<td>61</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Cell cycle analysis of Allicin-treated HeLa cells</td>
<td>63</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Cell cycle analysis of Allicin (1.5 μM)-treated HeLa cells</td>
<td>64</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Cell cycle analysis of Allicin (3 μM)-treated HeLa cells</td>
<td>65</td>
</tr>
</tbody>
</table>
Figure 18 FITC-Annexin V assay for measurement of apoptosis in Allicin-treated HeLa cells

Figure 19 Amount of Apoptosis in Allicin-treated HeLa cells

Figure 20 Modulation of Bax and Bcl-2 levels in Allicin-treated HeLa cells

Figure 21 Mitochondrial release of cytochrome c by Allicin-treated HeLa cells

Figure 22 Dose and time dependent activation of caspase-9 in Allicin-treated HeLa cells

Figure 23 Dose and time dependent activation of caspase-3 in Allicin-treated HeLa cells

Figure 24 Cleavage and activation of caspase-9 in Allicin-treated HeLa cells

Figure 25 Cleavage and activation of caspase-3 in Allicin-treated HeLa cells

Figure 26 Suppression of Allicin-induced caspase-9 activation by caspase-9 inhibitor (Z-LEHD-FMK)

Figure 27 Abrogation of Allicin-induced growth suppression of HeLa cells by caspase-9 inhibitor (Z-LEHD-FMK)

Figure 28 Suppression of Allicin-induced caspase-3 activation by caspase-3 inhibitor (Z-DEVD-FMK)

Figure 29 Abrogation of Allicin-induced growth suppression of HeLa cells by caspase-3 inhibitor (Z-DEVD-FMK)

Figure 30 Abrogation of Allicin-induced growth suppression of HeLa cells by general caspase inhibitor (Z-VAD-FMK)

Figure 31 PARP Cleavage in Allicin-treated HeLa cells

Figure 32 Effect of pretreatment of Cyclosporin A (CsA, 5 μM) on cell viability of Allicin (1.5 μM)-treated HeLa cells

Figure 33 Effect of pretreatment of Cyclosporin A (CsA, 5 μM) on cell viability of Allicin (3.0 μM)-treated HeLa cells

Figure 34 Effect of Cyclosporin A (CsA, 5 μM) on Allicin (3.0 μM)-Induced Apoptosis in HeLa cells
Figure 35 Effect of Cyclosporin A (CsA, 5 μM) on cell cycle distribution of Allicin (3.0 μM)-treated HeLa cells

Figure 36 Effect of Allicin (1.5 μM) on Glutathione (GSH) content of HeLa cells

Figure 37 Effect of Allicin (3.0 μM) on Glutathione (GSH) content of HeLa cells

Figure 38 Minimal Glutathione (GSH) level in Allicin-treated HeLa cells

Figure 39 Effect of Allicin (3.0 μM) on free Thiol (-SH) content of cytosolic fraction of HeLa cells

Figure 40 Effect of Allicin (3.0 μM) on free Thiol (-SH) content of mitochondrial fraction of HeLa cells

Figure 41 Time dependent decrease of Glutathione (GSH) level in Allicin (1.5 μM)-treated HeLa cells pretreated with Buthionine sulfoximine (BSO)

Figure 42 Time dependent decrease of Glutathione (GSH) level in Allicin (3.0 μM)-treated HeLa cells pretreated with Buthionine sulfoximine (BSO)

Figure 43 Effect of pretreatment of Buthionine sulfoximine (BSO) on cell viability of Allicin (1.5 μM)-treated HeLa cells

Figure 44 Effect of pretreatment of Buthionine sulfoximine (BSO) on cell viability of Allicin (3.0 μM)-treated HeLa cells

Figure 45 Effect of N-acetyl cysteine (NAC, 0.1 mM) on cell viability of Allicin-treated HeLa cells

Figure 46 Effect of N-acetyl cysteine (NAC, 0.5 mM) on cell viability of Allicin-treated HeLa cells

Figure 47 Effect of N-acetyl cysteine (NAC, 1 mM) on cell viability of Allicin-treated HeLa cells

Figure 48 Effect of N-acetyl cysteine (NAC, 1 mM) on cell cycle distribution of Allicin (3.0 μM)-treated HeLa cells

Figure 49 Effect of N-acetyl cysteine (NAC, 1 mM) on Allicin (3.0 μM)-Induced apoptosis in HeLa cells
Figure 50 Downregulation of HPV E6 and E7 oncoprotein in Allicin-treated HeLa cells

Figure 51 Upregulation of p53 tumor suppressor protein in Allicin-treated HeLa cells

Figure 52 Dose dependent reduction in viability of monocytes, isolated from blood of cervical cancer patients, treated with Allicin for 24 hour assessed by MTT assay

Figure 53 Dose dependent reduction in viability of monocytes, isolated from blood of cervical cancer patients, treated with Allicin for 48 hour assessed by MTT assay

Figure 54 Dose and time dependent activation of caspase-9 in Allicin-treated monocytes

Figure 55 Dose and time dependent activation of caspase-3 in Allicin-treated monocytes

Figure 56 Abrogation of Allicin-induced reduction in viability of monocytes by general caspase inhibitor (Z-VAD-FMK)

Figure 57 Effect on TNF-α expression in monocytes treated with Allicin for 24 hour

Figure 58 Effect on TNF-α expression in monocytes treated with Allicin for 48 hour

Figure 59 Effect on IL-1α expression in monocytes treated with Allicin for 24 hour

Figure 60 Effect on IL-1α expression in monocytes treated with Allicin for 48 hour

Figure 61 Effect on IL-6 expression in monocytes treated with Allicin for 24 hour

Figure 62 Effect on IL-6 expression in monocytes treated with Allicin for 48 hour