List of Figures

1.1 Schematic diagram of scattering event 7

2.1 Radial charge density distribution for Na atom 44
2.2 Potential curves of V_{SR} and V_{LR} in V_{SP} in the case of Na atom 50
2.3 Radian charge density and absorption potential for Na at 150 eV 55
2.3 Variation of Δ with respect to incident energy E_i for Na molecule 58
2.4 Structure of ethane (C$_2$H$_6$) and ethanol (CH$_3$CH$_2$OH) with bond lengths (in a.u.) 74

3.1 Different cross sections for e – Li scattering in Å2 85
3.2 Different cross sections for e – Na scattering in Å2 86
3.3 Different cross sections for e – K scattering in Å2 86
3.4 Total Cross Sections and total ionization cross sections for e – Li scattering in Å2 90
3.5 Total Cross Sections and total ionization cross sections for e – Na scattering in Å2 92
3.6 Total Cross Sections and total ionization cross sections for e – K scattering in Å2 94
3.7 Total ionization cross sections for e – F scattering in Å2 98
3.8 Total ionization cross sections for e – Cl scattering in Å2 98
3.9 Total ionization cross sections for e – Br scattering in Å2 99
3.10 Total ionization cross sections for e – I scattering in Å2 99
3.11 Total ionization cross sections for e – HF scattering in Å2 101
3.12 Total ionization cross sections for e – HCl scattering in Å2 101
3.13 Total ionization cross sections for e – HBr scattering in Å2 102
3.14 Total ionization cross sections for e – HI scattering in Å2 102

4.1 Total ionization cross sections for e – H$_2$CO scattering in Å2 117
4.2 Total ionization cross sections for e – HCOOH scattering in Å2 117
List of figures

4.3 Total ionization cross sections for e – PH$_3$ scattering in Å2 118
4.4 Total ionization cross sections for e – H$_2$S scattering in Å2 119
4.5 Total ionization cross sections for e – N(CH$_3$)$_3$ scattering in Å2 124
4.6 Total ionization cross sections for e – NH(CH$_2$)$_2$ scattering in Å2 125
4.7 Total ionization cross sections for e – NH$_2$CH$_3$ scattering in Å2 125
4.8 Total ionization cross sections for e – P(CH$_3$)$_3$ scattering in Å2 129
4.9 Total ionization cross sections for e – PH(CH$_3$)$_2$ scattering in Å2 130
4.10 Total ionization cross sections for e – PH$_2$CH$_3$ scattering in Å2 130
4.11 Total ionization cross sections for e – CO scattering in Å2 132
4.12 Total ionization cross sections for e – CO$_2$ scattering in Å2 133
4.13 Total ionization cross sections for e – CS scattering in Å2 134
4.14 Total ionization cross sections for e – CS$_2$ scattering in Å2 135
4.15 Total ionization cross sections for e – OCS scattering in Å2 136
4.16 Total ionization cross sections for e – S$_2$ scattering in Å2 137
4.17 Comparison of total ionization cross sections for all the present targets in Å2 138

5.1 Division of configuration space in the fixed nuclei R – matrix theory 145
5.2 Modules for inner region calculations in R – matrix method 147
5.3 Modules for outer region calculations in R – matrix method 149
5.4 Total cross sections for e – H$_2$CO scattering 158
5.5 Total cross sections for e – HCOOH scattering 159
5.6 Total cross sections for e – NH$_3$ scattering (experimental comparison) 163
5.7 Total cross sections for e – NH$_3$ scattering (theoretical comparison) 164
5.8 Total cross sections for e – H$_2$S scattering (experimental comparison) 165
5.9 Total cross sections for e – H$_2$S scattering (theoretical comparison) 167
5.10 Total cross sections for e – PH$_3$ scattering (experimental comparison) 168
5.11 Total cross sections for e – PH$_3$ scattering (theoretical comparison) 169