Contents

Acknowledgements I
List of Publications III
Preface VII

Chapter 1 Existing information about Tantalum dichalcogenides 1
1.1 Introduction 2
1.2 Occurrence and synthesis 3
1.3 Crystal structure 5
1.4 Properties of tantalum dichalcogenides 8
 1.4.1 Electronic properties 8
 1.4.2 Charge Density Wave 9
1.5 Uses 14
References 15

Chapter 2 Growth of TaS$_2$Se$_{2-x}$ (x=0, 0.5, 1, 1.5, 2) single crystals 19
2.1 Historical introduction of crystal growth 20
2.2 Different methods for crystal growth 22
2.3 Vapour transport technique 24
 2.3.1 Chemical Vapour Transport technique 24
 2.3.2 Direct Vapour Transport technique 29
2.4 Crystal growth of tantalum dichalcogenides 31
 2.4.1 Growth furnace 31
 2.4.2 Ampoule 33
 2.4.3 Crystal growth by vapour transport technique 34
2.5 Study of crystal growth mechanism 37
 2.5.1 Crystal growth theories 38
 2.5.2 Surface micro-topography 43
2.6 Conclusions and scope for future work 55
References 57

Chapter 3 Structural characterization of TaS$_2$Se$_{2-x}$ (x=0, 0.5, 1, 1.5, 2) single crystals 61
3.1 Introduction 62
3.2 Energy Dispersive Analysis of X-Rays 62
 3.2.1 Principle of X-ray generation 63
 3.2.2 Instrumentation 63
 3.2.3 EDAX of TaS$_2$Se$_{2-x}$ (x= 0, 0.5, 1, 1.5, 2) single crystals 66
3.3 Powder X-ray diffraction 68
 3.3.1 Instrumentation 69
 3.3.2 X-ray diffractogram 72
 3.3.3 X-ray density 77
 3.3.4 Line broadening analysis 78
 3.3.5 Determination of growth and deformation probabilities 82
3.4 conclusions 83
References 84
Chapter 4 Temperature dependent electrical properties of TaS$_x$Se$_{2-x}$ (x = 0, 0.5, 1, 1.5, 2) single crystals

4.1 Introduction
4.2 Methods for electrical resistivity measurement
 4.2.1 Bulk Resistivity measurement
 4.2.2 Four point probe method
 4.2.3 Van der Pauw method
4.3 Measurement of temperature dependent electrical resistivity of 2H-TaS$_x$Se$_{2-x}$ single crystals
 4.3.1 Experimental arrangement
 4.3.2 Temperature dependent electrical resistivity perpendicular to c-axis
 4.3.3 Temperature dependent electrical resistivity parallel to c-axis
 4.3.4 Anisotropy
4.4 Measurement of hall-effect
4.5 Thermo-electric power
 4.5.1 Experimental arrangement
 4.5.2 Measurement of thermoelectric power in 2H-TaS$_x$Se$_{2-x}$ single crystals
4.6 Conclusions
4.7 Scope of future work
References

Chapter 5 Pressure dependent electrical properties of TaS$_x$Se$_{2-x}$ (x = 0, 0.5, 1, 1.5, 2) single crystals

5.1 Introduction
5.2 Experimental aspects
 5.2.1 Generation of pressure
 5.2.1.1 Bridgman anvils
 5.2.1.2 Gasket
 5.2.1.3 Pressure transmitting medium
 5.2.2 Pressure measurement
5.3 Measurement of pressure dependent electrical resistivity of 2H-TaS$_x$Se$_{2-x}$ single crystals
 5.3.1 Experimental arrangement
 5.3.2 Results and discussion
5.4 Scope of future work
References

Chapter 6 Pressure dependent optical properties of TaS$_x$Se$_{2-x}$ (x=0, 0.5, 1, 1.5, 2) single crystals

6.1 Introduction
6.2 Experimental aspect
 6.2.1 Diamond anvil cell
 6.2.1.1 Construction of DAC
 6.2.1.2 Alignment of DAC
 6.2.1.3 Gasketing
 6.2.1.4 Sample preparation and loading
 6.2.1.5 Generation and measurement of pressure
 6.2.2 UV-VIS-NIR spectrophotometer system
6.3 Measurements of pressure dependent optical absorption in 2H-TaS$_x$Se$_{2-x}$ single crystals
6.4 Conclusions 184
6.5 Scope of future work 185
References 188

Chapter 7 Summary, conclusions and future scope 190
7.1 Summary and review of work 190
7.2 Conclusions 192
7.3 Future prospects 194

APPENDIX - I 199
VITAE 212