CONTENTS

List of Abbreviations
List of Tables
List of Figures
Synopsis

CHAPTER I GENERAL INTRODUCTION

1.1 The wheat in perspective
 1.1.1 General considerations 01
 1.1.2 Characteristics of wheat grown in India 01
 1.1.3 Structure and composition of wheat grain 01
 1.1.4 Applications of wheat 03

1.2 Wheat proteins 03
 1.2.1 General description of wheat proteins 03
 1.2.2 Gluten and its composition 04
 1.2.3 Gliadin 06
 1.2.4 Structure of gliadins 08
 1.2.5 Glutelin 09
 1.2.6 Glutelin subunits 10
 1.2.7 High molecular weight glutelin subunits 12
 1.2.8 Structure of HMW-GS 12
 1.2.9 Low molecular weight glutelin subunits 14
 1.2.10 Structure of LMW-GS 16
 1.2.11 Structure of glutelin 18

1.3 Wheat dough 18
 1.3.1 Composition of wheat dough 18
 1.3.2 Dough mixing and microscopic structure 19
 1.3.3 Physical factors that influence dough rheology 19
 1.3.4 Chemical factors that influence dough rheology 19
 1.3.5 Role of glutelin in dough functionality 20
 1.3.6 Dough improvers 21
1.4 Protein-protein cross-linking

1.4.1 Occurrence of protein cross-links
1.4.2 Types of protein cross-links
1.4.3 Cross-links formed by chemical reactions
1.4.4 Cross-links formed by enzyme catalysis
1.4.5 Disulfide cross-links
1.4.6 Tyrosine derived cross-links
1.4.7 Application of enzymes in food processing

1.5 Oxidative enzymes

1.5.1 General account
1.5.2 Peroxidase
1.5.3 Reaction mechanism of peroxidase
1.5.4 Physiological role of plant peroxidases
1.5.5 Structure of peroxidase
1.5.6 Effect of pH and temperature on peroxidase
1.5.7 Wheat peroxidase

1.6 Objectives and scope of the investigation

CHAPTER II MATERIALS AND METHODS

2.1 Materials

2.1.1 Wheat procurement
2.1.2 Chemicals

2.2 Methods

2.2.1 Extraction and assay of oxidative enzymes in wheat flour
2.2.2 Cysteine measurement
2.2.3 Hydrogen peroxide estimation
2.2.4 Purification of peroxidase from wheat bran
2.2.5 Protein estimation
2.2.6 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and molecular weight determination
2.2.7 Glycoprotein staining and estimation of carbohydrate content
2.2.8 Molecular weight determination by gel filtration chromatography
2.2.9 Determination of optimum pH
2.2.10 Effect of substrate concentrations on peroxidase activity
2.2.11 Spectral analysis
CHAPTER III RESULTS AND DISCUSSION

Section A: Purification of wheat bran peroxidase and its characterization 58

3.1.1 Purification of peroxidase from wheat bran 58

3.1.1.1 Screening of wheat flour of different varieties for oxidative enzyme activities 58

3.1.1.2 Crude extract 61

3.1.1.3 Ammonium sulphate fractionation 62

3.1.1.4 Ion-exchange chromatography 62

3.1.1.5 Gel filtration chromatography 65

3.1.2 Characterization of peroxidase purified from wheat bran 68

3.1.2.1 Molecular weight determination 68

3.1.2.2 Peroxidase spectrum and glycoprotein nature 68

3.1.2.3 pH optimum 70

3.1.2.4 Effect of substrate concentration 70

3.1.2.5 Kinetic mechanism 75

3.1.2.6 Thiol oxidase activity of peroxidase 77

3.1.2.7 Generation of \(\text{H}_2\text{O}_2 \) by thiol oxidase function of peroxidase 80

3.1.2.8 Effect of pH on thiol oxidase activity 82

3.1.2.9 Effect of calcium on activity of wheat bran peroxidase 82

3.1.2.10 Effect of calcium on structure of wheat bran peroxidase 85

3.1.2.11 Thermal stability of wheat bran peroxidase 87
Section B: Role of peroxidase in cross-linking of glutenin proteins

3.2.1 Cross-linking of mixture of High molecular weight and low molecular weight glutenin subunits by peroxidase

3.2.1.1 Cross-linking of glutenin subunits by wheat bran peroxidase

3.2.1.2 Cross-linking of glutenin subunits by horseradish peroxidase

3.2.2 Cross-linking of individual groups of high molecular weight and low molecular weight glutenin subunits by peroxidase

3.2.2.1 Cross-linking of low molecular weight glutenin subunits by wheat bran peroxidase

3.2.2.2 Cross-linking of low molecular weight glutenin subunits by horseradish peroxidase

3.2.2.3 Cross-linking of high molecular weight glutenin subunits by wheat bran peroxidase

3.2.2.4 Cross-linking of high molecular weight glutenin subunits by horseradish peroxidase

3.2.3 Cross-linking of glutenin subunits by hydrogen peroxide

3.2.3.1 Cross-linking of mixture of high molecular weight and low molecular weight glutenin subunits by hydrogen peroxide

3.2.3.2 Cross-linking of individual groups of high molecular weight and low molecular weight glutenin subunits by hydrogen peroxide

3.2.3.3 Characterization of cross-linked protein

Section C: Role of wheat proteins in flour functionality

3.3.1 Wheat flour protein fractionation

3.3.1.1 High molecular weight glutenin subunit composition

3.3.1.2 Fractionation of wheat flour proteins by gel filtration chromatography and effect of protein fractions on chapati quality

3.3.1.3 Extraction of flour proteins with SDS containing buffer

3.3.1.4 Fractionation of proteins by SE-HPLC

3.3.1.5 Dough characteristics of different wheat varieties
3.3.1.6 Thiol and disulfide contents in flour and their relation to chapati texture 117
3.3.1.7 Effect of dough characteristics on the texture of chapati 121
3.3.1.8 Interrelationship between molecular weight of different fractions, dough rheology and chapati quality 121

Section D: General discussion 123

CHAPTER IV SUMMARY AND CONCLUSION

4.1 Summary 131
4.2 Conclusion 137

BIBLIOGRAPHY 139

APPENDIX I List of papers published/manuscript under preparation, posters presented
APPENDIX II Reprints of papers published/accepted