REFERENCES


Guoqiang Wang, Chunsheng Shi, Naiqin Zhao, Xiwen Du. (2007).”Synthesis and characterization of Ag nanoparticles assembled in ordered array pores of porous anodic alumina by chemical deposition”. Vol 61, pp 3795-3797.


by the fungus, *Verticillium* sp. and surface trapping of the gold nanoparticles formed”. Angew Chem Int. Vol 40, pp 3585–3588.


Service RF.(2001)."Nanocomputing. Assembling nanocircuits from the bottom up”. Science, Vol 293, pp 782-785


Ulkur, Oncul O. (2005). “Comparison of silver-coated dressing (Acticoat), chlorhexidine acetate 0.5% (Bactigras), and fusidic acid 2% (Fucidin) for topical antibacterial effect in methicillin-resistant Staphylococci-contaminated, full-skin thickness rat burn wounds”. Int jou Burns. Vol 31, pp 874-877.


Paper Publications & List of Conferences


Future work

The present investigation confirmed that the leaf extract of *Ocimum sanctum* (holy thulsi) one of the excellent reducing and capping agent for reduction of silver nitrate into silver nanoparticles. This study reports showed that green synthesis of AgNps from medicinally important plant leads to production of nanoparticles with the properties of medicinally important one and to avoid toxic chemicals with adverse effects in medical applications rather than physical and chemical methods. The silver nanoparticles synthesized from green chemistry approach used for testing for antibacterial activity, loaded to cotton fabrics and tested for physical and biological properties, surface characteristics and wash durability nature and also used for amoxicillin loaded silver nanoparticles for drug delivery. Silver nanoparticles (AgNPs) are attracting attention in the various fields especially on biomedical applications. In future, the research work extent to applications of silver nanoparticles synthesized from leaf extract of *O sanctum* to develop the biosensor for biomolecules, testing the cytotoxic nature AgNps into various cell lines, cell imaging with florescent dye doped silver nanoparticles for diagnostic purposes and to assess the Cancer cell specific cytotoxicity by AgNps.