CONTENTS

1 Introduction 1-27

1.1 Environmental pollution 1
1.2 Water pollution 2
1.3 Pollutants 3
 1.3.1 Fluoride 3
 1.3.2 Arsenic 4
 1.3.3 Dyes 5
 1.3.3.1 Methylene blue 5
 1.3.3.2 Rhodamine 6G 6
 1.3.3.3 Erythrosine B 6
 1.3.4 Oil spill 6
1.4 Strategy for combating water pollution 7
1.5 Literature review 8
 1.5.1 Fluoride 8
 1.5.2 Arsenic 9
 1.5.3 Dyes 9
 1.5.4 Oils 9
 1.5.5 Defluoridation 10
 1.5.6 Removal of arsenic 12
 1.5.7 Removal of dyes 15
 1.5.7.1 Removal of Methylene blue 15
 1.5.7.2 Removal of Erythrosine B 17
 1.5.7.3 Removal of Rhodamine 6G 17
 1.5.7.4 Removal of Oil spill 18
1.6 Adsorption characterization studies 19
1.7 Adsorption dynamics and parameters 19

References 21

2 Scope and objective of the present work 28-32

2.1 Introduction 28
2.2 Adsorption-a tool for experimental study 28
2.3 The choice of pollutants 29
2.4 The choice of adsorbents 30
2.5 Scope for adsorption 30
2.6 Objective of the present work 31
2.7 Instrumental characterization 32

3 Materials and methods 33-56

3.1 Materials 33

- **3.1.1 Chemicals** 33

3.2 Adsorbents 35

3.3 Purification 35

- **3.3.1 Water** 35
- **3.3.2 Ethanol** 35

3.4 Preparation of adsorbent materials 37

- **3.4.1 Prosopis spicigera** L. wood (PSLW) carbon 37
- **3.4.2 Silver-impregnated carbon (SIC)** 37
- **3.4.3 Water hyacinth** 37

3.5 Instrumental analysis and characterization 38

- **3.5.1 Infrared spectroscopy** 38
- **3.5.2 UV-visible spectroscopy** 38
- **3.5.3 Fluoride ion selective electrode** 38
- **3.5.4 Atomic Absorption Spectrophotometer** 38
- **3.5.5 Scanning Electron Microscopy (SEM)** 38
- **3.5.6 Energy-Dispersive X-ray analysis** 39

3.6 Surface functional groups characterization of adsorbents 39

- **3.6.1 Boehm titration** 39
- **3.6.2 Titration with NaHCO$_3$** 39
- **3.6.3 Titration with NaOH** 40
- **3.6.4 Titration with hydrochloric acid** 40
- **3.6.5 Surface area determination** 40
 - **3.6.5.1 BET method** 40
 - **3.6.5.2 Methylene blue method** 40
- **3.6.6 Determination of pH$_{zpc}$** 41
- **3.6.7 Cation exchange capacity** 42
3.7 Water hyacinth biomass characterization
 3.7.1 Buoyancy test
 3.7.2 Hydrophobicity
 3.7.3 Wettability

3.8 Preparation of adsorbates (pollutant solutions)
 3.8.1 Fluoride
 3.8.2 Arsenic
 3.8.3 Dyes
 3.8.4 Oils

3.9 Batch sorption experiments

3.10 Analysis of adsorbates (pollutants)
 3.10.1 Fluoride
 3.10.2 Arsenic (III)
 3.10.3 Dyes
 3.10.4 Oils

3.11 Adsorption parameters
 3.11.1 Adsorption isotherm
 3.11.2 Thermodynamic parameters
 3.11.3 Pore diffusion
 3.11.4 Mass transfer
 3.11.5 Continuous mode analysis (Column adsorption)

3.12 Data analysis
 3.12.1 Reproducibility of results

References

4 Spectroscopic and other characterization of adsorbents
 4.1 Surface area
 4.2 Cation exchange capacity
 4.3 Evaluation of surface acidity
 4.3.1 \(\text{pH}_{\text{zpc}} \) characterization of activated carbons
 4.3.2 Acid strengths and sites
 4.3.3 Surface basicity
 4.4 FT-IR spectral characterization
5 Adsorption of an anionic dye, Erythrosine B on PSLW carbon

5.1 Introduction

5.2 Batch adsorption studies
 5.2.1 Effect of pH
 5.2.2 Effect of contact time and initial dye concentration
 5.2.3 Effect of adsorbent dosage
 5.2.4 Effect of adsorption of ErB in the presence of other ions
 5.2.5 Effect of temperature

5.3 Thermodynamic behaviour

5.4 Isotherm analysis

5.5 Adsorption kinetics

5.6 Intraparticle diffusion

5.7 Mass transfer study

5.8 Column study

5.9 Desorption study

5.10 Conclusion

References

6 Adsorption of Methylene blue and Rhodamine 6G on PSLW carbon

6.1 Introduction

6.2 Batch adsorption studies
 6.2.1 Effect of pH
 6.2.2 Effect of contact time and initial dye concentration
 6.2.3 Effect of adsorbent dosage
 6.2.4 Effect of adsorption of MB and Rh 6G in the presence of other ions
 6.2.5 Effect of temperature

6.3 Thermodynamic behaviour
7 Water hyacinth (Eichhornia crassipes) as oil sorbent 123-132

7.1 Introduction 123
7.2 Methodologies of oil sorption experiments 124
 7.2.1 Buoyancy test 124
 7.2.2 Capillary rise 124
7.3 Oil sorption capacity of the parts of the biomass water hyacinth in the absence of water 126
7.4 Oil sorption capacity of the parts of the biomass water hyacinth in the presence of water 127
7.5 Oil sorption mechanisms 130
7.6 Conclusion 130
References 132

8 Adsorption characteristics of fluoride on PSLW carbon 133-152

8.1 Introduction 133
8.2 Batch adsorption studies 134
 8.2.1 Effect of pH 134
 8.2.2 Effect of contact time and initial fluoride ion concentration 135
 8.2.3 Effect of adsorbent dosage 136
 8.2.4 Effect of temperature 137
8.3 Adsorption thermodynamics 138
8.4 Adsorption kinetics 140
8.5 Pore diffusion 143
8.6 Mass transfer study 144
8.7 Adsorption isotherms 145
8.8 Continuous mode analysis 147
8.9 Defluoridation using clay filter 148
8.10 Comparison of PSLW carbon with different adsorbents 149
8.11 Conclusion 150
References 151

9 Adsorptive removal of arsenic on PSLW carbon 153-171
9.1 Introduction 153
9.2 Batch adsorption studies 154
 9.2.1 Effect of pH 154
 9.2.2 Effect of contact time and initial As(III) concentration 157
 9.2.3 Effect of temperature 158
9.3 Thermodynamic behaviour 159
9.4 Isotherm analysis 160
9.5 Adsorption kinetics 162
9.6 Pore diffusion 166
9.7 Home water treatment using clay filter 167
9.8 Comparison of PSLW carbon with different adsorbents 168
9.9 Conclusion 168
References 170

10 Arsenic removal using silver-impregnated PSLW activated carbon 172-187
10.1 Introduction 172
10.2 Batch adsorption studies 173
 10.2.1 Effect of pH 173
 10.2.2 Effect of contact time 176
 10.2.3 Effect of temperature 177
10.3 Thermodynamic behaviour 178
10.4 Isotherm analysis
10.5 Adsorption kinetics
10.6 Intraparticle diffusion
10.7 Column study
10.8 Desorption study
10.9 Comparison of SIC with different adsorbents
10.10 Conclusion

References

Summary

Future scope of the present work

Appendix

List of publications