ABSTRACT

Name of the candidate : **P.V. Radhika**

Ph.D. Reg. No. : 5386

Institution : S.T. Hindu College

Location : Nagercoil, Tamilnadu, India

Submitted to : Manonmaniam Sundaranar University, Tirunelveli

Field of study : Crystal Growth and Characterization (Solid State Physics)

Subject : Physics

Guided by : **Dr. K. Jayakumari,**
Associate Professor and Head,
Department of Physics,
Sree Ayyappa College for Women,
Chunkankadai – 629 003.

Co-Guided by : **Dr. C.K. Mahadevan,**
Associate Professor of Physics (Rtd.),
S.T. Hindu College,
Nagercoil - 629 002.

Title of the Thesis : GROWTH AND CHARACTERIZATION OF PURE AND DOPED L-ARGININE ACETATE SINGLE CRYSTALS

No. of pages : xvi + 195 + 19 (published papers)

Keywords : LAA single crystals; Crystal growth; Doped crystals; Solution growth; X-ray diffraction; Density; EDAX; Lattice parameters; NLO crystals; Microhardness; FTIR spectra; UV spectra; SHG behaviour; Thermal studies; Dielectric constant; Dielectric loss; AC electrical conductivity; Activation energy.
LAA [L-arginine acetate] is an efficient organic nonlinear optical material for second harmonic generation. It has a low ε_r value and have a UV cutoff around 240 nm which makes it suitable for frequency conversion purposes. It belongs to the monoclinic crystal system. Several investigators have shown considerable interest on this material.

In the present study, L-arginine acetate (LAA), was doped separately with formic acid, hydrochloric acid, and oxalic acid and single crystals were grown by the slow evaporation method. The grown crystals were characterized by single crystal XRD, PXRD, density, EDAX, FTIR, UV-Vis spectral, SHG, thermal and AC electrical measurements.

The results obtained indicate that the pure and doped LAA crystals crystallize in the monoclinic crystal system. All the crystals grown are found to be transparent, hard and thermally stable. The SHG efficiency of all the samples is comparable to that of the KDP crystals.

The dielectric studies indicate that the ε_r and tan δ values increase with the increase in temperature indicating the normal dielectric behaviour. The low ε_r values observed indicate that all the grown crystals are not only efficient NLO materials but also promising low ε_r value dielectric materials.