LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Relationship among neighbourhood Pixels; (b) Order of influence of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>neighbourhood pixel on its centre.</td>
<td>46</td>
</tr>
<tr>
<td>3.1</td>
<td>Texture Primitives</td>
<td>72</td>
</tr>
<tr>
<td>3.2</td>
<td>Boat Image</td>
<td>76</td>
</tr>
<tr>
<td>3.3</td>
<td>Identification of untexturedness because of coefficients that fall</td>
<td></td>
</tr>
<tr>
<td></td>
<td>inside the confidence limit at 75% level of significance.</td>
<td>76</td>
</tr>
<tr>
<td>3.4</td>
<td>Original Images</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) D16 (b) D109 (c) D38 (d) D93</td>
<td>77</td>
</tr>
<tr>
<td>3.5</td>
<td>Texspectra:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a) Texspectrum for D38 at 5 % of significance level</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>(b) Texspectrum for D38 at 20 % of significance level.</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>(c) Texspectrum for D93 at 5 % of significance level.</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>(d) Texspectrum for D93 at 20 % of significance level.</td>
<td>79</td>
</tr>
<tr>
<td>3.6</td>
<td>Target image formed by four different images for classification</td>
<td>80</td>
</tr>
<tr>
<td>3.7</td>
<td>Classified image (Supervised)</td>
<td>81</td>
</tr>
<tr>
<td>3.8</td>
<td>Classified image (Unsupervised)</td>
<td>81</td>
</tr>
<tr>
<td>3.9</td>
<td>Target image formed by five different images for classification</td>
<td>82</td>
</tr>
<tr>
<td>3.10</td>
<td>Classified images (Supervised)</td>
<td>83</td>
</tr>
<tr>
<td>3.11</td>
<td>Classified images (Unsupervised)</td>
<td>83</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>4.1</td>
<td>Hierarchy of order of the pixels</td>
<td>90</td>
</tr>
<tr>
<td>4.2</td>
<td>Geometrical representation of the features present in the image.</td>
<td>93</td>
</tr>
<tr>
<td>4.3</td>
<td>Edge magnitude for background images; (a) original image; (b) smoothed image; (c) residual image.</td>
<td>94</td>
</tr>
<tr>
<td>4.4</td>
<td>Edge magnitude and direction for edge map; (a) original image; (b) smoothed image; (c) residual image between (a) and (b); (d) region extracted around edge pixel; (e) represents edge direction.</td>
<td>95</td>
</tr>
<tr>
<td>4.5</td>
<td>(a) gradient between original image and its smoothed version; (b) pixels represent thick edge map.</td>
<td>95</td>
</tr>
<tr>
<td>4.6</td>
<td>(a) Lena image (b) Boat image</td>
<td>97</td>
</tr>
<tr>
<td>4.7</td>
<td>Smoothed images by the proposed model</td>
<td>98</td>
</tr>
<tr>
<td>4.8</td>
<td>Thick edge region extracted.</td>
<td>98</td>
</tr>
<tr>
<td>4.9</td>
<td>Edge map using proposed method</td>
<td>99</td>
</tr>
<tr>
<td>4.10</td>
<td>Edge map: Figure 4.9(a) and 4.9(b) are superimposed on its original images.</td>
<td>100</td>
</tr>
<tr>
<td>4.11</td>
<td>Edge maps obtained by different edge detectors. (a) and (b) the proposed technique; (c) and (d) Canny’s detectors; (e) and (f) Sobel operator; (g) and (h) Prewitt operators.</td>
<td>102</td>
</tr>
<tr>
<td>4.12</td>
<td>Original synthetic images (a) Circle image (b) Square image.</td>
<td>103</td>
</tr>
<tr>
<td>5.1</td>
<td>Hierarchy of order of the pixels</td>
<td>116</td>
</tr>
<tr>
<td>5.2</td>
<td>a), (b) and (c) are original images (d), (e) and (f) are reconstructed images by the proposed model.</td>
<td>125</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>72</td>
</tr>
<tr>
<td>5.1</td>
<td>122</td>
</tr>
</tbody>
</table>

- Table 3.1: Texnum values.
- Table 5.1: Compression Results