Table of Contents

Abbreviations and Notations

LIST OF FIGURES

LIST OF TABLES

ACKNOWLEDGEMENT

CHAPTER 1 INTRODUCTION

1.1 Tuberculosis

1.1.1 History of tuberculosis

1.1.2 Role of World Health Organization (WHO) in TB control

1.1.3 TB in India

1.1.4 Microbiology of disease - causing bacteria

1.1.5 The erratic path of anti-TB drug development

1.1.6 Newer anti-tubercular agents

1.2 Oral Drug Delivery Systems; Microparticulate and Microspheres

1.2.1 Microparticulate drug delivery system

1.2.2 Microsphere as a delivery system

1.2.3 Types of microspheres

1.3 Bioenhancers

1.4 Organization of the Thesis

CHAPTER 2 LITERATURE REVIEW

2.1 Applications of Microsphere Drug Delivery System

2.2 Use of Isoniazid and Rifampicin in TB Therapy

2.2.1 Isoniazid

2.2.2 Rifampicin

2.3 Bioenhancers

2.3.1 History of bioenhancers

2.3.2 Advantages of bioenhancers

2.3.3 Mechanism of action of bioenhancers

2.3.4 Examples of bioenhancers used alone or in combination

Summary

CHAPTER 3. RESEARCH ENVISAGED AND PLAN OF WORK

3.1 Research Envisaged
3.2 Assumptions and Hypothesis
3.3 Aim and Objectives
3.4 Methodology
3.5 Expected Outcomes

CHAPTER 4. EXPERIMENTAL WORK

4.1 Materials Used
 4.1.1 Instruments and equipments used
 4.1.2 Drugs and chemicals

4.2 Characterization of Drugs
 4.2.1 Evaluation of drugs as per Pharmacopoeia
 4.2.2 Evaluation of excipients / polymers as per Pharmacopoeia

4.3 Extraction and Evaluation of Herbal Drugs
 4.3.1 Extraction of drugs
 4.3.2 Evaluation of herbal drugs

4.4 Preparation of Microspheres and Selection of Final Method

4.5 Optimization of Methods for Preparation of Microspheres
 4.5.1 Modified emulsification method
 4.5.2 Complex coacervation method

4.6 Preparation of Microspheres
 4.6.1 Isoniazid (INH) microspheres
 4.6.1.1 INH microspheres by modified emulsification method (MEM)
 4.6.1.2 INH microspheres by complex coacervation method (CCM)
 4.6.2 Rifampicin (RIF) microspheres
 4.6.2.1 RIF microspheres by modified emulsification method (MEM)
 4.6.2.2 RIF microspheres by complex coacervation method (CCM)
 4.6.3 Isoniazid + Rifampicin (combination) microspheres
 4.6.3.1 Isoniazid + Rifampicin microspheres by modified emulsification method (MEM)
 4.6.3.2 Isoniazid + Rifampicin microspheres by complex coacervation method (CCM)
 4.6.4 Addition of bioenhancer extract in optimized batches of microspheres
 4.6.4.1 Addition of bioenhancer extract in optimized batches of microsphere prepared by modified emulsion method
 4.6.4.2 Addition of bioenhancer extract in optimized batches of microsphere prepared by complex coacervation method
CHAPTER 5. RESULTS AND DISCUSSIONS

5.1 Characterization of Drugs / Polymers, Chemicals and Bioenhancers

5.1.1 Characterization of drugs

5.1.1.1 Isoniazid

5.1.1.2 Rifampicin

5.2 Evaluation of herbal drugs

5.2.1 Piper nigrum (Black pepper)

5.2.2 Carum carvi (Caraway)

5.3 Evaluation of microspheres

5.3.1 INH loaded microspheres prepared by modified emulsion method (MEM) and complex coacervation method (CCM)

5.3.1.1 FT-IR spectroscopic analysis

5.3.1.2 Differential scanning calorimetry (DSC) analysis

5.3.1.3 Particle size analysis

5.3.1.4 Percentage yield

5.3.1.5 Determination of percentage drug entrapment

5.3.1.6 Bioadhesion study

5.3.1.7 Permeability by intestinal sac method

5.3.1.8 In-vitro drug release

5.3.1.9 Stability study of selected formulations as per ICH guidelines

5.3.1.10 Statistical analysis

Conclusion

5.3.2 RIF loaded microspheres prepared by modified emulsion method (MEM) and complex coacervation method (CCM)

5.3.2.1 FT-IR spectroscopic analysis

5.3.2.2 Differential scanning calorimetry (DSC) analysis

5.3.2.3 Particle size analysis

5.3.2.4 Percentage yield

5.3.2.5 Determination of percentage drug entrapment

5.3.2.6 Bioadhesion study

5.3.2.7 Permeability by intestinal sac method
5.3.2 *In-vitro* drug release
5.3.2.9 Stability study of selected formulations as per ICH guidelines
5.3.2.10 Statistical analysis

Conclusion

5.3.3 INH + RIF loaded microspheres prepared by modified emulsion method (MEM) and complex coacervation method (CCM)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.3.1 Particle size analysis</td>
<td>139</td>
</tr>
<tr>
<td>5.3.3.2 Percentage yield</td>
<td>140</td>
</tr>
<tr>
<td>5.3.3.3 Determination of percentage drug entrapment</td>
<td>140</td>
</tr>
<tr>
<td>5.3.3.4 Bioadhesion study</td>
<td>140</td>
</tr>
<tr>
<td>5.3.3.5 Permeability by intestinal sac method</td>
<td>141</td>
</tr>
<tr>
<td>5.3.3.6 In-vitro drug release</td>
<td>142</td>
</tr>
<tr>
<td>5.3.3.7 Stability study of selected formulations as per ICH guidelines</td>
<td>151</td>
</tr>
<tr>
<td>5.3.3.8 Statistical analysis</td>
<td>152</td>
</tr>
</tbody>
</table>

Conclusion

5.4 Best formulations by modified emulsification method and complex coacervation method for INH and RIF microspheres using bioenhancer(s) – Summary of best results

CHAPTER 6. CONCLUSIONS

REFERENCES

ANNEXURES

- Annexure 1 Certificate of Analysis of Isoniazid
- Annexure 2 Certificate of Analysis of Rifampicin
- Annexure 3 Certificate of Authentication of Herbal Drugs
- Annexure 4 Approval of Animal Studies by IAEC