1.0 INTRODUCTION

1.1 Method of improving Properties of Thermosetting Polymers 1
1.2 Toughening Requirements and Toughening Mechanism 2
 1.2.1 General Toughening Mechanisms of Thermosetting Polymers 2
 1.2.1.1 Crack-pinning Mechanism 2
 1.2.1.2 Microcracking Mechanism 3
 1.2.1.3 Localized Shear Yielding (or Shear banding) Mechanism 3
 1.2.1.4 Particle Bridging (Rigid particles) Mechanism 3
 1.2.1.5 Crack-Path Deflection Mechanism 3
1.3 Bismaleimides: Properties and Advantages 4
1.4 Drawback of Bismaleimides and Scope for Improvement 5
1.5 Chemical Toughening/ Modification of Bismaleimides 6
 1.5.1 Bismaleimide / Allyl Phenyl Copolymers 6
 1.5.2 Bismaleimide / Michael-Addition Copolymers 7
 1.5.3 Bismaleimide / Epoxy Copolymers 8
 1.5.4 Bismaleimide / Cyanate Copolymers 8
 1.5.5 Modification with Thermoplastics 8
1.6 Bismaleimide based Composites and their Application 9
1.7 Outline of the Thesis 10
2.0 LITERATURE REVIEW

2.1 Bismaleimide resin and its chemistry
 2.1.1 General Bismaleimide properties 12
 2.1.2 Modification approaches of BMIs 13

2.2 Thermoplastic Bismaleimide blends 14

2.3 Thermoset Bismaleimide blends
 2.3.1 Phenol-formaldehyde (Novolac)-BMI blends 16
 2.3.2 Allyl Phenol-Bismaleimide blends 18

2.4 Characterization of BMI 22

2.5 Applications of Bismaleimide Resin 24

2.6 Research Gap 26

2.7 Research Objectives 26

2.8 Research Methodology 27

2.9 Scope of the Present Research work 27

3.0 MATERIALS AND METHODS

3.1 Materials
 3.1.1 Matrix Resin for blends and composite preparation 30
 3.1.2 4, 4’ Bismaleimidodiphenyl methane (BMPM) 30
 3.1.3 BMIP (2,2- bis 4- [(4maleimidophenoxy)phenyl]propane) 31
 3.1.4 Methylenedianiline (MDA) 33
 3.1.5 O-O’ Diallyl bisphenol A (DABA) 34
 3.1.6 Acrylonitrile Butadiene Styrene (ABS) 35
 3.1.7 Allyl Novolac 36
 3.1.8 Dimethyl formamide (DMF) 37

3.2 Reinforcement used for Composite Preparation
 3.2.1 Carbon Fabric 39
3.2.2 E-Glass Fibre

3.3 Modification Procedure of BMI with Different Modifiers
 3.3.1 Solution Blending Method
 3.3.2 Viscosity Measurements of Prepared Blends
 3.3.3 Preparation of Neat casting and Blends of BMIP/DABA
 3.3.4 BMI modification with thermoplastic, ABS
 3.3.5 Preparation of Blends of BMPM/ Allyl Novolac

3.4 FRP Composites Fabrication
 3.4.1 Preparations of pre-pregs
 3.4.2 Preparation of fibre reinforced composites

3.5 Characterization of neat resin castings
 3.5.1 Differential Scanning Calorimetry (DSC)
 3.5.1.1 Nonisothermal DSC measurements(Dynamic measurement)
 3.5.2 Spectroscopic characterization by FTIR AND NMR
 3.5.2.1 FT-IR Studies
 3.5.2.2 NMR Studies
 3.5.3 Gel Permeation Chromatography (GPC)
 3.5.4 Thermal Gravimetric Analysis (TGA)
 3.5.5 Dynamic Mechanical Thermal Analysis (DMA)

3.6 Mechanical Performance characterization
 3.6.1 Flexural strength
 3.6.2 Inter Laminar Shear Strength (ILSS)
 3.6.3 Compressive strength
 3.6.4 Tensile Strength
 3.6.5 Impact Strength
 3.6.6 Scanning Electron Microscope (SEM)
4.0 TOUGHENING/MODIFICATION OF BISMALEIMIDES WITH DIFFERENT ALLYL COMPOUNDS. PART 1: BMIP/DABA SYSTEM

4.1 Introduction 58
4.2 Experimental 58
 4.2.1 Preparation and Characterization of neat BMIP/DABA resin blends 58
 4.2.2 Curing 59
 4.2.2.1 Curing of Bismaleimide resin (BMIP) 59
 4.2.2.2 Curing of the blend 59
 4.2.2.3 Study of curing by FT-IR 63
 4.2.2.4 Thermal analysis of the cured blend 65
 4.2.3 Composites fabrication 66
 4.2.3.1 Preparation of laminates 66
 4.2.4 Evaluation of Mechanical properties 66
 4.2.4.1 Mechanical property comparison of Carbon and Glass Composite 67
4.3 Part II. BMPM-AN blends 69
4.4 Introduction 69
4.5 Synthesis of Allylated Novolac (AN) 69
4.6 Results and Discussion 70
 4.6.1 Characterization of Allyl novolac 70
 4.6.1.1 Determination of Hydroxyl Value 70
 4.6.1.2 Spectroscopy 71
 4.6.1.3 Gel Permeation Chromatography 72
 4.6.1.4 Characterization of BMPM 73
 4.6.1.5 Blending of BMPM/AN and characterization of BMPM-AN Blends 75
 4.6.1.5.1 Spectroscopic characterization 75
 4.6.1.5.2 Cure characterisation by DSC 77
 4.6.1.5.3 Thermo gravimetric analysis (TGA) 79
 4.6.1.5.4 Dynamic Mechanical Analysis (DMA) of the Composites 80
 4.6.1.6 Mechanical characterization 82
4.6.1.7 SEM Analysis 83
4.6.2 Cure kinetics - theoretical approach 84
 4.6.2.1 Kinetic models 84
 4.6.2.2 Calculation of activation energy, Ea by Kissinger and Ozawa methods for BMPM/AN blends 87
 4.6.2.3 Kinetic analysis by isoconversional methods 91
 4.6.2.4 Order of the reaction 94
4.7 Conclusion 96

5.0 BISMALEIMIDE-ALLYL NOVOLAC OLIGOMERS: SYNTHESIS AND CURE KINETICS

5.1 Introduction 99
5.2 Experimental 99
 5.2.1 Materials 99
 5.2.2 Synthesis 99
 5.2.2.1 Synthesis of single component BMI resin system 99
 5.2.2.2 Synthesis of Maleimido Benzoyl chloride (MBC) and Allyl novolac 100
 5.2.2.3 Synthesis of Maleimide incorporated Allyl Novolac oligomer
 (One component BMI resin system) 101
5.3 Results and Discussion 102
 5.3.1 Characterization of Maleimido benzoic acid 102
 5.3.2 Characterization of Allyl novolac 102
 5.3.3 Characterization of Single component alder ene system 102
 5.3.3.1 Cure Studies 105
 5.3.3.2 Kinetics of cure reaction 107
 5.3.3.3 Calculation of Ea by Kissinger and Ozawa methods 109
 5.3.3.4 Mechanical and Dynamic mechanical properties of the Composites 116
 5.3.3.5 Dynamic Mechanical analysis of the composites 117
5.3.3.6 Glass transition behaviour of the composites 118
5.3.3.7 Thermal characterization by TGA 119
5.3.4 Morphology of the composites 121

5.4 Conclusion 123

6.0 THERMOPLASTIC TOUGHENING OF BISMALEIMIDES

6.1 Introduction 124
6.2 Experimental 124
6.2.1 Part I: Toughening of BMPM/MDA by ABS 124
6.2.1.1 BMI modification with Thermoplastics 124
6.3 Results and Discussion 126
6.3.1 Viscosity Results 126
6.3.2 DSC Results 127
6.3.3 Mechanical Properties of the Composites (UTS, FS and Impact Strength) 128
6.3.3.1 Tensile strength 128
6.3.3.2 Flexural strength 129
6.3.3.3 Impact strength 130
6.3.4 Morphology of the Composites 131
6.4 Part. II: Modification of BMPM/DABA resin system with ABS 133
6.5 Experimental study 133
6.5.1 BMI modification with thermoplastic-blend preparation (BMPM/DABA-ABS) 133
6.6 Results and Discussion 134
6.6.1 Viscosity Results 134
6.6.2 DSC Results 134
6.6.3 Mechanical Properties of the Composites 136
6.6.3.1 Tensile strength 136
6.6.3.2 Flexural strength of the composites 137
6.6.3.3 Impact strength 138
6.6.4 Morphology of ABS modified BMPM/DABA/ Carbon fabric Composites 139
6.7 Conclusion 141

7.0 CONCLUSIONS AND SCOPE FOR FUTURE WORK

7.1 Conclusions 142
7.2 Scope for future work 146

REFERENCES 147

APPENDICES 167