TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter-I Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1 Motivation for the Research</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Statement of the problem</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Objective of the research study</td>
<td>9</td>
</tr>
<tr>
<td>1.4 Outline of the research study & PPPWM control system design philosophy</td>
<td>9</td>
</tr>
<tr>
<td>1.4.1 Concept of Pulse position pulse width modulation</td>
<td>10</td>
</tr>
<tr>
<td>1.4.2 PPPWM compared with PWM</td>
<td>11</td>
</tr>
<tr>
<td>1.4.3 PPPWM control system design methodology</td>
<td>12</td>
</tr>
<tr>
<td>1.5 Contribution made in the thesis</td>
<td>15</td>
</tr>
<tr>
<td>1.6 Organisation of the thesis</td>
<td>18</td>
</tr>
<tr>
<td>Chapter-II Overview of the PWM design methods</td>
<td></td>
</tr>
<tr>
<td>2.1 General comments</td>
<td>20</td>
</tr>
<tr>
<td>2.2 PWM modelling & Analysis techniques</td>
<td>20</td>
</tr>
<tr>
<td>2.3 PWM stability analysis</td>
<td>21</td>
</tr>
<tr>
<td>2.4 Controller synthesis technique in PWM control system</td>
<td>23</td>
</tr>
<tr>
<td>2.5 General Discussion</td>
<td>25</td>
</tr>
<tr>
<td>Chapter III Generation of Pulse position pulse width modulated (PPPWM) control signal</td>
<td></td>
</tr>
</tbody>
</table>
through state equivalence transformation of linear discrete control (LDC) signal.

3.1 General comments
3.2 Mathematical definition of PPPWM signal
3.2.1 Unipolar PPPWM signal definition
3.2.2 Bipolar PPPWM signal definition
3.3 Description of plant dynamics and state transition equation
3.4 Transformation of LDC signal to equivalent unipolar PPPWM signal
3.4.1 Condition of state equivalence for unipolar PPPWM and solution of unipolar PPPWM signal variables
3.4.2 Formulation of simplified unipolar PPPWM signal
3.4.2.1 First order unipolar PPPWM
3.4.2.2 Second order unipolar PPPWM
3.4.2.3 Third order unipolar PPPWM
3.5 Transformation of LDC signal to equivalent bipolar PPPWM signal
3.5.1 Condition of state equivalence for Bipolar PPPWM
3.5.2 Formulation of simplified Bipolar PPPWM signals
3.5.2.1 First order Bipolar PPPWM
3.5.2.2 Second order Bipolar PPPWM
3.6 Discussion on PPPWM signal transformation
CHAPTER-IV Analysis of inter sample ripple and state error at sampling instants for PPPWM feedback control system

4.1 Intersample ripple in PPPWM feedback control system

4.1.1 Ripple bound for first order unipolar PPPWM

4.1.2 Ripple bound for first order bipolar PPPWM

4.1.3 Ripple bound for second order PPPWMs

4.1.4 Selection of sampling period 'T'

4.2 Analysis of state error at sampling instants

4.2.1 State & output errors for first order unipolar PPPWM

4.2.2 State & output errors for second order unipolar PPPWM

4.2.3 State and Output error for first order bipolar PPPWM

4.2.4 State and output error for second order bipolar PPPWM

4.2.5 Error comparision of different types of PPPWMs

4.3 Numerical example for comparision of ripple bounds

4.4 Discussion

CHAPTER-V Stability analysis of PPPWM control system

5.1 General comments

5.2 State space formulation of PPPWM system
5.2.1 State transition matrix for first order
unipolar PPPWM

5.2.2 State transition matrix for second order
unipolar PPPWM

5.2.3 State transition matrix for first order
Bipolar PPPWM

5.2.4 State transition matrix for second order
Bipolar PPPWM

5.3 Conditions of asymptotic stability
and perturbation bound for state transition
matrix

5.3.1 Asymptotic stability under perturbation

5.3.2 Asymptotic stability conditions on
perturbation bound

5.3.3 Evaluation of perturbation bound E_m for
various PPPWMs

5.3.3.1 First order unipolar PPPWM

5.3.3.2 Second order unipolar PPPWM

5.4 Verification of Relative stability using
Lyapunov’s method

5.4.1 Evaluation of effective gain margin as a
measure of relative stability

5.4.2 Verification of effective Phase margin

5.4.3 Verification of effective Damping factor (α_m)

CHAPTER-VI Design examples of PPPWM control system

6.1 General comments
6.2 Optimal PPPWM control of a sampled data position servo—Design example of exact state equivalence

6.2.1 Formulation of the problem
6.2.2 Development of the method
6.2.2.1 Optimisation of the linear plant
6.2.2.2 Derivation of equivalent PPPWM control
6.2.3 Practical Design example

6.3 General design procedure of PPPWM control by numerical optimisation—Design example of approximate state equivalence

6.3.1 State feedback controller design for modulation free system
6.3.2 Selection of sampling interval
6.3.3 Selection of the type of PPPWM
6.3.4 Verification of asymptotic stability
6.3.5 Steady state performance analysis
6.3.6 Numerical optimisation algorithm
6.3.7 Numerical design procedure
6.3.8 Design example

CHAPTER VII Concluding remarks and recommendations

REFERENCES
Appendix A 181
Appendix B 185
Appendix C 187
Appendix D 189
Appendix E 191
Appendix F 196