Symbols

\(c \) \hspace{1cm} \text{Reference length for longitudinal plane dynamics} \hspace{1cm} (m)

\(b \) \hspace{1cm} \text{Reference length for lateral plane dynamics} \hspace{1cm} (m)

\(C_{\ell r} \) \hspace{1cm} \text{Effect of yaw rate on rolling moment coefficient}

\(C_{nr} \) \hspace{1cm} \text{Effect of yaw rate on yawing moment coefficient}

\(C_{mr} \) \hspace{1cm} \text{Effect of yaw rate on pitching moment coefficient}

\(C_{\alpha} \) \hspace{1cm} \text{Static longitudinal stability} \hspace{1cm} (1/\text{rad})

\(C_{Na} \) \hspace{1cm} \text{Aerodynamic normal force coefficient} \hspace{1cm} (1/\text{rad})

\(C_{xu} \) \hspace{1cm} \text{Variation of axial force with respect to } u \hspace{1cm} (s/m)

\(C_{xa} \) \hspace{1cm} \text{Axial force variation with angle of attack} \hspace{1cm} (1/\text{rad})

\(C_{xq} \) \hspace{1cm} \text{Effect of pitch rate on axial force} \hspace{1cm} (s/\text{rad})

\(C_{w} \) \hspace{1cm} \text{Gravity Component} \hspace{1cm} (m/s^2)

\(C_{y\beta} \) \hspace{1cm} \text{Variation of side force with respect to } \beta \hspace{1cm} (1/\text{rad})

\(C_{yp} \) \hspace{1cm} \text{Effect of roll rate on side force} \hspace{1cm} (s/\text{rad})

\(C_{yr} \) \hspace{1cm} \text{Effect of yaw rate on side force} \hspace{1cm} (s/\text{rad})

\(C_{zu} \) \hspace{1cm} \text{Variation of normal force with respect to } u \hspace{1cm} (s/m)

\(C_{z\alpha} \) \hspace{1cm} \text{Normal force co-efficient slope} \hspace{1cm} (1/\text{rad})

\(C_{zq} \) \hspace{1cm} \text{Effect of pitch rate on normal force}

\(I_{xx}, I_{yy}, I_{zz} \) \hspace{1cm} \text{Moment of Inertia (Roll, Pitch, Yaw)} \hspace{1cm} (kg-m^2)

\(I_{xz}, I_{zx} \) \hspace{1cm} \text{Product of inertia} \hspace{1cm} (kg-m^2)

\(K_{A} \) \hspace{1cm} \text{Forward gain}

\(L_{a} \) \hspace{1cm} \text{Aerodynamic normal force coefficient} \hspace{1cm} (N/\text{rad})

\(l_{c} \) \hspace{1cm} \text{Control moment arm} \hspace{1cm} (m)

\(l_{p} \) \hspace{1cm} \text{Distance of slosh pendulum from centre of gravity} \hspace{1cm} (m)

\(l_{r} \) \hspace{1cm} \text{Distance between engine centre of gravity and hinge point} \hspace{1cm} (m)

\(m \) \hspace{1cm} \text{Vehicle mass} \hspace{1cm} (kg)
\(m_r \)
Engine mass
\((kg) \)

\(P_{\text{indep}} \)
Set of plants with independent uncertainty

\(P_{\text{affine}} \)
Set of plants with affine uncertainty

\(P_{\text{multilin}} \)
Set of plants with multi-linear uncertainty

\(q \)
Dynamic Pressure
\((Pa) \)

\(S \)
Reference area
\((m^2) \)

\(T_c \)
Control force
\((N) \)

\(U_0 \)
Forward velocity
\((m/s) \)

\(\alpha \)
Angle of attack
\((rad) \)

\(\beta \)
Side slip angle
\((rad) \)

\(\delta_{el} \)
Elevon1 deflection angle
\((rad) \)

\(\delta_{rl} \)
Rudder1 deflection angle
\((rad) \)

\(\zeta_a \)
Actuator damping ratio
\((rad/s) \)

\(\omega_a \)
Actuator bandwidth
\((rad/s) \)

\(\phi \)
Roll attitude angle
\((rad) \)

\(\psi \)
Yaw attitude angle
\((rad) \)

\(\theta \)
Pitch attitude angle
\((rad) \)

\(\theta_0 \)
Inertial Pitch angle
\((rad) \)

\(\theta_s \)
Sensed attitude angle
\((rad) \)

\(\dot{\theta} \)
Pitch body rate
\((rad/s) \)

\(\tau_i \)
Oxidiser tank slosh angle – pitch
\((rad) \)

\(\dot{\tau}_i \)
Oxidiser tank slosh rate – pitch
\((rad/s) \)

\(\tau_{2p} \)
Fuel tank slosh angle – pitch
\((rad) \)

\(\dot{\tau}_{2p} \)
Fuel tank slosh rate – pitch
\((rad/s) \)

\(\delta_p \)
Engine gimbal deflection angle in pitch
\((rad) \)

\(\dot{\delta}_p \)
Engine gimbal deflection rate in pitch
\((rad/s) \)

\(\rho \)
Atmospheric Density
\((kg/m^3) \)
\sigma(l_{ps,t}) \quad \text{Mode slope at Attitude sensor location}

\sigma_{lact} \quad \text{Mode slope at actuator location}

Abbreviations

- **ITAE** \quad \text{Integral of the Time-Multiplied Absolute Error}
- **LQG** \quad \text{Linear Quadratic Gaussian}
- **MIMO** \quad \text{Multi Input Multi Output}
- **PD** \quad \text{Proportional Derivative}
- **PID** \quad \text{Proportional Integral Derivative}
- **QFT** \quad \text{Quantitative Feedback Theory}
- **SOPTD** \quad \text{Second Order Model Plus Time Delay}
- **UAV** \quad \text{Unmanned Aerial Vehicle}
- **TP-LQG** \quad \text{Two Phase LQG}