Chapter – 4

On Generalized Fractional Integration of I-Function

4.1 Introduction

In the present chapter, we study and develop the generalized fractional integral operators given by Saigo [157, 158, 159]. Here we establish two theorems that give the images of the product of I-function and general class of polynomials in Saigo operators. On account of general nature of the Saigo operators, I-function and general class of polynomials, a large number of new and known images involving Riemann-Liouville and Erdélyi-Kober fractional integral operators and several special functions follow as special cases of our main findings. To illustrate, six corollaries have been recorded here.

4.2 Prerequisites

A useful generalization of the hypergeometric fractional integrals, including the Saigo operators [157, 158, 159], introduced by Marichev [180] (see details in Samko, Kilbas and Marichev [225] and also see Kilbas and Saigo [18, p.258]) is as follows:

Let α, β, η be complex numbers and $x > 0$, then the generalized fractional integral operators (The Saigo operators [157]) involving Gaussian hypergeometric function are defined by the following equations:
A Study of Fractional Calculus Operators and Integrals Pertaining to Certain Special Functions with Applications

\[
\left(J_{0+}^{\alpha, \beta, \eta} f \right)(x) = \frac{x^{-\alpha-\beta}}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} \, \text{}_2F_1 \left(\alpha + \beta, -\eta; \alpha; 1 - \frac{t}{x} \right) f(t) \, dt \quad ; \text{Re}(\alpha) > 0
\]

...(4.2.1)

and

\[
\left(J^{\alpha, \beta, \eta} f \right)(x) = \frac{1}{\Gamma(\alpha)} \int_x^\infty (t-x)^{\alpha-1} t^{-\alpha-\beta} \, \text{}_2F_1 \left(\alpha + \beta, -\eta; \alpha; 1 - \frac{x}{t} \right) f(t) \, dt \quad ; \text{Re}(\alpha) > 0
\]

...(4.2.2)

where \(\text{}_2F_1(\cdot) \) Stands for the well known Gaussian hypergeometric function defined by

\[
\text{}_2F_1(a, b; c; x) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n} \frac{x^n}{n!}
\]

...(4.2.3)

When \(\beta = -\alpha \), the above equations (4.2.1) and (4.2.2) reduce to the following classical Riemann-Liouville fractional integral operator (see Samko et al., [225], p.94, Eqns. (5.1), (5.3)):

\[
\left(J_{0+}^{\alpha, -\alpha, \eta} f \right)(x) = \left(J_{0+}^{\alpha} f \right)(x) = \frac{1}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} f(t) \, dt \quad ; x > 0
\]

...(4.2.4)

and

\[
\left(J^{\alpha, -\alpha, \eta} f \right)(x) = \left(J^{\alpha} f \right)(x) = \frac{1}{\Gamma(\alpha)} \int_x^\infty (t-x)^{\alpha-1} f(t) \, dt \quad ; x > 0
\]

...(4.2.5)

Again, if \(\beta = 0 \), the equations (4.2.1) and (4.2.2) reduce to the following Erdélyi-Kober fractional integral operator (see Samko et al., [225], p.322, Eqns. (18.5), (18.6)):

\[
\left(J_{0+}^{\alpha, 0, \eta} f \right)(x) = \left(J_{0+}^{\alpha} f \right)(x) = \frac{x^{-\alpha-\eta}}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} t^{\eta} f(t) \, dt \quad ; x > 0
\]

...(4.2.6)

and
\[(J_{\alpha,\eta} f)(x) = (K_{\alpha,0} f)(x) = \frac{x^\eta}{\Gamma(\alpha)} \int_x^\infty (t-x)^{\alpha-1} t^{-\alpha-\eta} f(t) \, dt; \quad x > 0\]

... (4.2.7)

The following two lemmas will be required to establish our main results.

Lemma 1 (Kilbas and Sebastian [19], p. 871, Eq. (15) to (18)).

Let \(\alpha, \beta, \eta \in C\) be such that \(Re(\alpha) > 0\) and \(Re(\mu) > \max\{0, Re(\beta - \eta)\}\) then the following relation holds:

\[
(J_{0+}^{\alpha,\beta,\eta} t^{\mu-1})(x) = \frac{\Gamma(\mu) \Gamma(\mu + \eta - \beta)}{\Gamma(\mu + \alpha + \eta) \Gamma(\mu - \beta)} x^{\mu-\beta-1}
\]

... (4.2.8)

In particular, if \(\beta = -\alpha\) and \(\beta = 0\) in (4.2.8), we have:

\[
(J_{0+}^\alpha t^{\mu-1})(x) = \frac{\Gamma(\mu)}{\Gamma(\mu + \alpha)} x^{\mu+\alpha-1}, \quad Re(\alpha) > 0 \quad \text{and} \quad Re(\mu) > 0
\]

... (4.2.9)

and

\[
(J_{0+}^\eta t^{\mu-1})(x) = \frac{\Gamma(\mu + \eta)}{\Gamma(\mu + \alpha + \eta)} x^{\mu-1}, \quad Re(\alpha) > 0 \quad \text{and} \quad Re(\mu) > -Re(\eta)
\]

... (4.2.10)

Lemma 2 (Kilbas and Sebastian [19], p. 872, Eq. (21) to (24)).

Let \(\alpha, \beta, \eta \in C\) be such that \(Re(\alpha) > 0\) and \(Re(\mu) > \max\{Re(\beta), Re(\eta)\}\) then the following relation holds:

\[
(J_{\alpha,\beta,\eta}^\mu t^{\mu-1})(x) = \frac{\Gamma(\beta - \mu + 1) \Gamma(\eta - \mu + 1)}{\Gamma(1 - \mu) \Gamma(\alpha + \beta + \eta - \mu + 1)} x^{\mu-\beta-1}
\]

... (4.2.11)

In particular, if \(\beta = -\alpha\) and \(\beta = 0\) in (4.2.11), we have:

\[
(J_{\alpha}^\mu t^{\mu-1})(x) = \frac{\Gamma(1 - \alpha - \mu)}{\Gamma(1 - \mu)} x^{\mu+\alpha-1}, \quad 1 - Re(\mu) > Re(\alpha) > 0
\]

... (4.2.12)

and
\[(K_{\eta,\alpha}^\mu t^{\mu-1})(x) = \frac{\Gamma(\eta - \mu + 1)}{\Gamma(1 - \mu + \alpha + \eta)} x^{\mu-1}, \quad \text{Re}(\mu) < 1 + \text{Re}(\eta)\]

\hspace{1cm} \ldots (4.2.13)

4.3 Main Theorems

Theorem 1

\[
\begin{align*}
\left[t^{\mu-1} & \sum_{j=0}^{k} \left(\sum_{l_1=0}^{n_1/m_1} \cdots \sum_{l_k=0}^{n_k/m_k} \frac{(-n_1)_{m_1 l_1} \cdots (-n_h)_{m_h l_h}}{l_1! \cdots l_h!} \right) \right] (x) \\
&= x^{\mu-\beta-1} \sum_{l_1=0}^{n_1/m_1} \cdots \sum_{l_k=0}^{n_k/m_k} \left(\frac{1 - \mu}{1 - \mu - \eta + \beta - \sum_{j=1}^{k} \lambda_j l_j; v; 1} \right) \\
&\times I_{P_{l+2}Q_{l+2}:R}^{M+2} \left[z^v \right] \left(1 - \mu - \sum_{j=1}^{k} \lambda_j l_j, v; 1 \right) \left(a_j; a_j \right)_{1,N}^{(a_j'; a_j')_{N+1,P_l}} \\
&\left(1 - \mu + \beta - \sum_{j=1}^{k} \lambda_j l_j, v; 1 \right) \left(1 - \mu - \alpha - \eta - \sum_{j=1}^{k} \lambda_j l_j, v; 1 \right) \\
&\left(a_j', a_j' \right)_{1,N}^{(a_j'; a_j')_{N+1,P_l}} \\
&\left(b_j', b_j' \right)_{1,N}^{(b_j'; b_j')_{M+1,Q_l}} \left(b_j'; b_j' \right)_{M+1,Q_l} \\
&\ldots (4.3.1)
\end{align*}
\]

The I-function and the general class of polynomials \(S_n^m(x)\) occurring in the above expression are defined by (1.4.1) and (3.2.1) respectively, and the conditions of validity of (4.3.1) are as follows:

(i) \(\alpha, \beta, \eta, a, b, z \in \mathbb{C}\) and \(\lambda_j, v > 0\ \forall \ j \in \{1, k\}\)

(ii) \(|\text{arg} \ z| < \frac{1}{2} \Omega_i \pi; \ \Omega_i > 0\ \text{where}\)
\[
\Omega_l = \sum_{j=1}^{N} \alpha_j - \sum_{j=N+1}^{P_l} \alpha_{ij} + \sum_{j=1}^{M} \beta_j - \sum_{j=M+1}^{Q_l} \beta_{ij} \quad \forall \imath \in \mathbb{I}, R
\]

(iii) \(Re(\alpha) > 0 \) and \(Re(\mu) + \nu \min_{1 \leq j \leq M} Re\left(\frac{b_j}{\beta_j}\right) > \max\{0, Re(\beta - \eta)\}\)

Proof: In order to prove (4.3.1), we first express the general class of polynomials occurring in its left-hand side in the series form and also express the I-function in terms of the Mellin–Barnes contour integral by using (3.2.1) and (1.4.1) respectively. Next, on interchanging the order of summations & the integral occurring therein (which is permissible under the conditions stated), the LHS of (4.3.1) takes the following form \(\Delta\) (say):

\[
\Delta = \sum_{l_1=0}^{[n_1/m_1]} \sum_{l_2=0}^{[n_2/m_2]} \ldots \sum_{l_k=0}^{[n_k/m_k]} \left\{ \frac{(-n_1)_{m_1} l_1 \ldots (-n_h)_{m_h l_h}}{l_1! \ldots l_h!} \right\}
\]

\[
\times A'_{n_1,l_1} \ldots A^{(k)}_{n_h,l_h c_1 l_1 \ldots c_h l_h \sum_{j=1}^{k} \lambda_j l_j}
\]

\[
\times \frac{1}{2\pi i} \int L \phi(\xi) z^{\xi} d\xi \left(\int_{0}^{+} \alpha, \beta, \eta t^{\mu + \sum_{j=1}^{k} \lambda_j l_j + \nu \xi - 1}(x) d\xi \right)
\]

Finally, applying Lemma 1 and then re-interpreting the Mellin-Barnes contour integral thus obtained in terms of the I-function, we arrive at the RHS of (4.3.1) after a little simplification.

Theorem 2

\[
\left[\int_{\alpha,\beta,\eta}^{\alpha',\beta',\eta'} \left(t^{\mu-1} \prod_{j=1}^{k} S_{n_j}^{m_j} C_j t^{\lambda_j} \right) \right]_{P_l+Q_l+R}^{M,N} \left\{ z t^{\mu} \left(\begin{array}{c} (a_j', \alpha_j')_{1,N} ; (a_j', \alpha_j')_{N+1,P_l} \\ b_j', \beta_j' ; b_j', \beta_j' \end{array} \right) \right\} (x)
\]

\[
= x^{\mu-\beta-1} \sum_{l_1=0}^{[n_1/m_1]} \sum_{l_2=0}^{[n_2/m_2]} \ldots \sum_{l_k=0}^{[n_k/m_k]} \left\{ \frac{(-n_1)_{m_1 l_1} \ldots (-n_h)_{m_h l_h}}{l_1! \ldots l_h!} \right\}
\]

\[
\times A'_{n_1,l_1} \ldots A^{(k)}_{n_h,l_h c_1 l_1 \ldots c_h l_h \sum_{j=1}^{k} \lambda_j l_j}
\]

\[
\times \int_{P_l+2Q_l+2R}^{M,N+2} \left\{ \begin{array}{c} z x^{\mu} \left(\mu - \beta + \sum_{j=1}^{k} \lambda_j l_j + \nu \right) \right\}
\]

\[
\left(b_j', \beta_j' ; b_j', \beta_j' \right)_{M+1,Q_l'}
\]
\[
\begin{align*}
\left(\mu - \eta + \sum_{j=1}^{k} \lambda_j l_j, v; 1 \right), \left(a_{j', \lambda}, a_{j' \lambda} \right)_{1,N} ; \left(a_{j', \lambda} \right)_{N+1, P_i} \\
\left(\mu + \sum_{j=1}^{k} \lambda_j l_j, v; 1 \right), \left(\mu - \alpha - \beta - \eta - \sum_{j=1}^{k} \lambda_j l_j, v; 1 \right) \end{align*}
\]
\[\ldots(4.3.2)\]

The conditions of validity of (4.3.2) are as follows:

(i) \(\alpha, \beta, \eta, a, b, z \in \mathbb{C} \) and \(\lambda_j, v > 0 \ \forall \ j \in 1, k \)

(ii) \(|\arg z| < \frac{1}{2} \Omega_{l} \pi \); \(\Omega_{l} > 0 \) where

\[
\Omega_{l} = \sum_{j=1}^{N} \alpha_j - \sum_{j=N+1}^{P_i} \alpha_{j'i} + \sum_{j=1}^{M} \beta_j - \sum_{j=M+1}^{Q_i} \beta_{ji} \ \forall \ i \in 1, R
\]

(iii) \(Re(\alpha) > 0 \) and \(Re(\mu) - \nu \ \min_{1 \leq j \leq M} Re \left(\frac{b_j}{\beta_j} \right) < \min \{ Re(\beta), Re(\eta) \} \)

Proof: Proceeding on the lines similar to those followed for proving the Theorem 1 and using the Lemma 2, we easily arrive at the desired result.

4.4 Special Cases

(i) If we put \(\beta = -\alpha \) in (4.3.1) then in view of (4.3.2), we get the following new and interesting corollary concerning Riemann-Liouville fractional integral operator defined by (4.2.4):

Corollary 1

\[
\begin{align*}
&\left[J_{0+}^{\alpha} \left(t^{\mu - 1} \prod_{j=1}^{k} \sum_{n_j}^{m_j} \left[c_j t^{\lambda_j} \right] \right) \right]_{P_i, Q_i} \left(\sum_{l=0}^{l+u} \left(\frac{b_j}{\beta_j} \right)_{1,N} ; \left(b_{j'i}, \beta_{j'i} \right)_{M+1, Q_i} \right) \right] (x) \\
= x^{\mu - \beta - 1} \sum_{l_1=0}^{[n_1/m_1]} \sum_{l_2=0}^{[n_2/m_2]} \sum_{l_k=0}^{[n_k/m_k]} \left\{ \frac{(-1)^{m_1 l_1} \ldots (-1)^{m_1 l_1}}{l_1! \ldots l_h!} \right\} \\
& \times A'_{n_1 l_1} \ldots A^{(k)}_{n_h l_h} c_{l_1} \ldots c_{l_h} x^{l_1 a_1 + \ldots + l_h a_h}
\end{align*}
\]
\[A \text{ Study of Fractional Calculus Operators and Integrals Pertaining to Certain Special Functions with Applications} \]

\[
\times I^{M,N+1}_{P_i+1,Q_i+1;R} \left\{ \begin{array}{c}
Z^{\nu} \left(1 - \mu - \sum_{j=1}^{k} \lambda_j l_j, v; 1 \right), \\
\left(b_{j'}, \beta_{j'} \right)_{1, N}; \left(b_{j'} \right)'_{M+1, Q_i} \\
(1 - \mu - \alpha - \sum_{j=1}^{k} \lambda_j l_j, v; 1) \end{array} \right\}
\]

which holds under the conditions easily obtainable from those mentioned with (4.3.1).

(ii) On putting \(\beta = 0 \) in (4.3.1), then in view of (4.2.10), we get the following corollary pertaining to Erdélyi-Kober fractional integral operators defined by (4.2.6):

Corollary 2

\[
\left[J^{\mu,\alpha}_{n_1,k} \left(t^{\mu-1} \prod_{j=1}^{k} S^{m_j}_{n_j} \left[t^{\lambda_j j} \right] I^{M,N}_{P_i,Q_i;R} \left\{ Z^{\nu} \left(a_{j'}, \alpha_{j'} \right)_{1, N}; \left(a_{j'} \right)'_{N+1,P_i} \left(b_{j'} \right)'_{M+1, Q_i}; \left(\alpha_{j'} \right)' \right\} \right) \right] (x)
\]

\[
= x^{\mu-1} \sum_{l_1=0}^{[n_1/m_1]} \sum_{l_2=0}^{[n_2/m_2]} \ldots \sum_{l_k=0}^{[n_k/m_k]} \left\{ \frac{(-n_1)_{-l_1} \ldots (-n_h)_{-l_h}}{l_1! \ldots l_h!} A'_{n_1,l_1} \ldots A^{(k)}_{n_h,l_h} c_1 l_1 \ldots c_k l_k = \Sigma_{j=1}^{k} \lambda_j j \right\}
\]

\[
\times I^{M,N+1}_{P_i+1,Q_i+1;R} \left\{ \begin{array}{c}
Z^{\nu} \left(1 - \mu - \eta - \sum_{j=1}^{k} \lambda_j l_j, v; 1 \right), \\
\left(b_{j'}, \beta_{j'} \right)_{1, N}; \left(b_{j'} \right)'_{M+1, Q_i} \\
(1 - \mu - \alpha - \eta - \sum_{j=1}^{k} \lambda_j l_j, v; 1) \end{array} \right\}
\]

\[
\ldots (4.4.2)
\]

where

\[Re(\alpha) > 0 \quad \text{and} \quad Re(\mu) + v \min_{1 \leq j \leq M} Re \left(\frac{b_j}{\beta_j} \right) > -Re(\eta) \]
and the conditions (i) and (ii) mentioned with Theorem 1 are also satisfied.

(iii) If we put $\beta = -\alpha$ in (4.3.2), then in view of (4.2.12) we arrive at the following new and interesting corollary concerning Riemann-Liouville fractional integral operator defined by (4.2.4):

Corollary 3

\[
J_{\alpha}^{-}(t^{\mu-1} \sum_{j=1}^{k} \int_{\alpha}^{t} \left[J_{\alpha}^{-}(m_{j} t \lambda_{j}) I_{P_{i},Q_{i};R}^{M,N} \left(x \left(\begin{array}{c} \sum_{j=1}^{m_{j}} c_{j} \left(\begin{array}{c} a_{j}, \alpha_{j} \\ b_{j}, \beta_{j} \end{array} \right)_{1,N}^{1}; \left(\begin{array}{c} a_{j}', \alpha_{j}' \\ b_{j}', \beta_{j}' \end{array} \right)_{N+1,P_{i}} \end{array} \right) \right] \right)(x) \]

\[
= x^{\mu+\alpha-1} \sum_{l_{1}=0}^{[n_{1}/m_{1}]} \sum_{l_{2}=0}^{[n_{2}/m_{2}]} ... \sum_{l_{k}=0}^{[n_{k}/m_{k}]} \left(\frac{(-n_{1})_{l_{1} \ldots (-n_{h})_{m_{h} l_{h}}}{l_{1}! \ldots l_{h}!} \right)
\]

\[A'_{n_{1} l_{1}} \ldots A(k)_{n_{h} l_{h}} c_{1} \ldots c_{h} l_{h} X^{k} f_{j=1}^{k} \lambda_{j} l_{j} \]

\[
\times I_{P_{i},Q_{i}+2;R}^{M,N+2} \left(x \left(\begin{array}{c} \mu + \alpha + \sum_{j=1}^{k} \lambda_{j} l_{j}, v; 1 \\ b_{j}', \beta_{j}' \end{array} \right)_{1,N}^{1}; \left(\begin{array}{c} a_{j}', \alpha_{j}' \\ b_{j}', \beta_{j}' \end{array} \right)_{M+1,Q_{i}'}^{M+1,Q_{i}'} \end{array} \right) \]

\[
(\begin{array}{c} a_{j}', \alpha_{j}' \end{array})_{1,N}^{1}; (\begin{array}{c} a_{j}', \alpha_{j}' \end{array})_{N+1,P_{i}}^{N+1,P_{i}} \end{array} \right) \]

\[
\left(\mu + \sum_{j=1}^{k} \lambda_{j} l_{j}, v; 1 \right) \]

\[\ldots (4.4.3)\]

which holds under the conditions obtainable from those mentioned with (4.3.2).

(iv) On putting $\beta = 0$ in (4.3.2), then in view of (4.2.13) we get the following corollary pertaining to Erdélyi-Kober fractional integral operator defined by (4.2.7):

Corollary 4

\[
K_{\eta,a}^{-}(t^{\mu-1} \sum_{j=1}^{k} S_{n_{j}}^{m_{j}} \left[c_{j} t^{\lambda_{j}} \right] I_{P_{i},Q_{i};R}^{M,N} \left(x \left(\begin{array}{c} \sum_{j=1}^{m_{j}} c_{j} \left(\begin{array}{c} a_{j}, \alpha_{j} \\ b_{j}, \beta_{j} \end{array} \right)_{1,N}^{1}; \left(\begin{array}{c} a_{j}', \alpha_{j}' \\ b_{j}', \beta_{j}' \end{array} \right)_{N+1,P_{i}} \end{array} \right) \right)(x) \]

\[
= x^{\mu-1} \sum_{l_{1}=0}^{[n_{1}/m_{1}]} \sum_{l_{2}=0}^{[n_{2}/m_{2}]} ... \sum_{l_{k}=0}^{[n_{k}/m_{k}]} \left(\frac{(-n_{1})_{l_{1} \ldots (-n_{h})_{m_{h} l_{h}}}{l_{1}! \ldots l_{h}!} \right)
\]

\[A'_{n_{1} l_{1}} \ldots A(k)_{n_{h} l_{h}} c_{1} \ldots c_{h} l_{h} X^{k} f_{j=1}^{k} \lambda_{j} l_{j} \]

\[
\times I_{P_{i},Q_{i}+2;R}^{M,N+2} \left(x \left(\begin{array}{c} \mu + \alpha + \sum_{j=1}^{k} \lambda_{j} l_{j}, v; 1 \\ b_{j}', \beta_{j}' \end{array} \right)_{1,N}^{1}; \left(\begin{array}{c} a_{j}', \alpha_{j}' \end{array} \right)_{M+1,Q_{i}'}^{1}; (\begin{array}{c} a_{j}', \alpha_{j}' \end{array})_{N+1,P_{i}}^{N+1,P_{i}} \end{array} \right) \]

\[
\left(\mu + \sum_{j=1}^{k} \lambda_{j} l_{j}, v; 1 \right) \]

\[\ldots (4.4.3)\]
\begin{equation}
A'_{n_1,l_1} \ldots A^{(k)}_{n_h,l_h} c_1 l_1 \ldots c_h l_h x^{k} \sum_{j=1}^{k} \lambda_j l_j \right) \right) \right) \\
\times i_{P_i+2, Q_i+2; R}^{M,N+2} \left\{ ZX^u \left(\mu - \eta + \sum_{j=1}^{k} \lambda_j l_j, v; 1 \right), (b'_j, \beta'_j)_{1,N}; (b'_j', \beta'_j')_{M+1,Q'_i} \right. \\
\left. \left(a'_j, \alpha'_j \right)_{1,N}; (a'_j', \alpha'_j')_{N+1,P'_i} \right) \right. \\
\left(\mu - \alpha - \eta - \sum_{j=1}^{k} \lambda_j l_j, v; 1 \right) \right) \right) \\
\ldots (4.4.4) \end{equation}

which holds under the conditions easily obtainable from those mentioned with (4.3.2).

(v) If we take $P_i = P, Q_i = Q$ and $R = 1$ in the Theorem 1, we get the following result in terms of Fox’s H-Function [5,7]:

Corollary 5

\begin{equation}
\left. \left[\int_{0^+}^{\alpha, \beta, \eta} \left(t^{\mu-1} \prod_{j=1}^{k} S_{n_j}^{m_j} c_j t^{\lambda_j} \right) H_{P,Q}^{M,N} \left\{ zt^u \left((a'_j, \alpha'_j)_{1,P} \right) \right) \right] \right) (x) \\
= x^{\mu-\beta-1} \sum_{l_1=0}^{[n_1/m_1]} \sum_{l_2=0}^{[n_2/m_2]} \ldots \sum_{l_k=0}^{[n_k/m_k]} \left\{ \left(\frac{(-1)^{m_1} \ldots (-1)^{m_h}}{l_1! \ldots l_h!} \right) \right. \\
A'_{n_1,l_1} \ldots A^{(k)}_{n_h,l_h} c_1 l_1 \ldots c_h l_h x^{k} \sum_{j=1}^{k} \lambda_j l_j \right) \right) \right) \\
\times H_{P+2, Q+2}^{M,N+2} \left\{ ZX^u \left(1 - \mu - \sum_{j=1}^{k} \lambda_j l_j, v; 1 \right), (b'_j, \beta'_j)_{1,Q}; (1 - \mu + \beta - \sum_{j=1}^{k} \lambda_j l_j, v; 1) \right) \right) \right) \\
\ldots (4.4.4) \end{equation}
A Study of Fractional Calculus Operators and Integrals Pertaining to Certain Special Functions with Applications

\[
\left(1 - \mu - \eta + \beta \sum_{j=1}^{k} \lambda_j l_j, v; 1 \right), (\alpha_j', \alpha_j')_{1,P} \\
\left(1 - \mu - \alpha - \eta - \sum_{j=1}^{k} \lambda_j l_j, v; 1 \right)
\]

provided that the conditions easily obtainable from those mentioned with Theorem 1 are satisfied.

(vi) On setting \(R = 1, M = 1, N = P_i = P, Q_i = Q + 1, b_i' = 0, \beta_i' = 1, \alpha_i' = 1 - a_i', b_j' = 1 - b_j', \beta_j' = \beta_j' \) in (4.3.1), we arrive at the following result in terms of Wright’s generalized hypergeometric function [15]:

Corollary 6

\[
\left[\frac{\psi_{\alpha, \beta, \eta}}{t^{\mu-1}} \prod_{j=1}^{k} S_{m_j}^{m_j} \left[c_j t^\lambda_j \right] p \psi_{q} \left(-z t^u \left((\alpha_j', \alpha_j')_{1,P} \right) \right) \right] (x) \\
= x^{\mu-\beta-1} \sum_{l_1=0}^{[n_1/m_1]} \sum_{l_2=0}^{[n_2/m_2]} \sum_{l_h=0}^{[n_h/m_h]} \left\{ \frac{(-n_1 m_1 l_1 \ldots (-n_h m_h l_h)}{l_1! \ldots l_h!} \right\}

A'_{n_1 l_1} \ldots A^{(k)}_{n_h l_h} c_1^{l_1} \ldots c_h^{l_h x^{\sum_{j=1}^{k} \lambda_j l_j}}

\times \int_{P+2,Q+3:1}^{1,P+2,Q+3:1} \left(1 - \mu - \sum_{j=1}^{k} \lambda_j l_j, v; 1 \right), (0,1); (1 - b_j', \beta_j')_{1,Q'} \left(1 - \mu + \beta - \sum_{j=1}^{k} \lambda_j l_j, v; 1 \right),

\left(1 - \mu - \eta + \beta - \sum_{j=1}^{k} \lambda_j l_j, v; 1 \right), (1 - a_j', \alpha_j')_{1,P}

\left(1 - \mu - \alpha - \eta - \sum_{j=1}^{k} \lambda_j l_j, v; 1 \right)

\right)
provided that the conditions easily obtainable from those mentioned with Theorem 1 are satisfied.

On suitably specifying the parameters in (4.3.1), we arrive at the results due to Hussain [13], Kilbas [15] and Kilbas and Sebastian [19].

A number of other special cases of Theorem 2 can also be obtained on following the lines similar to those mentioned above for the Theorem 1 but we do not record them here explicitly.

Conclusion

In this chapter, the images of the generalized fractional integral operators given by Saigo have been developed in terms of the product of I-function and general class of polynomials. The results obtained here, besides being of very general character, have been put in a compact form, avoiding the occurrence of infinite series and thus making them useful in applications. Also, these results provide unification and extension of the results obtained earlier in the literature.