Contents

Abstract

1 Introduction

1.1 Biologically active heterocyclic compounds 1

1.2 Molecules of research interest ... 2
 1.2.1 Quinoline derivatives ... 3
 1.2.2 Imidazole derivatives ... 5

2 X-ray Crystallography

2.1 A brief history of crystallography 9

2.2 Diffraction of X-rays by crystals 10
 2.2.1 Reciprocal lattice and Ewald’s sphere 11
 2.2.2 Diffraction amplitude – structure factor 13

2.3 Estimation of X-ray intensity data 14
 2.3.1 Polarization factor ... 15
 2.3.2 Lorentz factor .. 15
 2.3.3 Absorption correction .. 16
 2.3.4 Extinction factor ... 17
 2.3.5 Anomalous scattering ... 18
 2.3.6 Temperature factor ... 19

2.4 Structure determination .. 20
 2.4.1 Phase problem .. 20
 2.4.2 Direct methods .. 21
 2.4.3 Development of information on phase 21
 2.4.3.1 Unitary structure factor 21
 2.4.3.2 Normalised structure factor 22
 2.4.4 Inequalities .. 22
 2.4.5 Equalities .. 23
 2.4.6 Probabilities .. 24
 2.4.7 Combined figure of merit 25
 2.4.8 Structure solution ... 25
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.8.1</td>
<td>Calculation of electron density function</td>
<td>25</td>
</tr>
<tr>
<td>2.4.9</td>
<td>Structure refinement</td>
<td>25</td>
</tr>
<tr>
<td>2.4.9.1</td>
<td>Difference Fourier synthesis</td>
<td>27</td>
</tr>
<tr>
<td>2.4.9.2</td>
<td>Weighting scheme</td>
<td>28</td>
</tr>
<tr>
<td>2.5</td>
<td>Instrument used</td>
<td>29</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Bruker X8 Proteum X-ray diffractometer</td>
<td>29</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Data collection and reduction</td>
<td>30</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Crystal and molecular structure</td>
<td>33</td>
</tr>
<tr>
<td>2.6</td>
<td>Results derived</td>
<td>33</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Bond lengths and bond angles</td>
<td>34</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Estimated standard deviations</td>
<td>35</td>
</tr>
<tr>
<td>2.6.2.1</td>
<td>Estimated standard deviations of bond lengths</td>
<td>35</td>
</tr>
<tr>
<td>2.6.2.2</td>
<td>Estimated standard deviations of bond angles</td>
<td>35</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Torsion angles</td>
<td>36</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Intercontacts–Hirshfeld surface analysis</td>
<td>36</td>
</tr>
<tr>
<td>2.6.4.1</td>
<td>Fingerprint plot</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>Quinoline Derivatives</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>8–Methoxy–2–methylquinoline–4–ol</td>
<td>40</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Synthesis and crystallization</td>
<td>40</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Crystal and molecular structure</td>
<td>41</td>
</tr>
<tr>
<td>3.2</td>
<td>3–Bromo–8–nitroquinoline</td>
<td>50</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Synthesis and crystallization</td>
<td>50</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Crystal and molecular structure</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>2–(4–Chlorophenyl)–6–methyl–4–(3–methyl phenyl)quinoline</td>
<td>60</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Synthesis and crystallization</td>
<td>60</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Crystal and molecular structure</td>
<td>61</td>
</tr>
<tr>
<td>3.4</td>
<td>6,7–Dimethoxy–2,4–diphenylquinoline</td>
<td>71</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Synthesis and crystallization</td>
<td>71</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Crystal and molecular structure</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>Imidazole Derivatives</td>
<td>87</td>
</tr>
<tr>
<td>4.1</td>
<td>4–(4,5–Diphenyl–1H–imidazol–2–yl)–N,N–dimethylaniline</td>
<td>87</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Synthesis and crystallization</td>
<td>87</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Crystal and molecular structure</td>
<td>88</td>
</tr>
<tr>
<td>4.2</td>
<td>4,5–Diphenyl–2–(3,4,5–trimethoxyphenyl)–1H–imidazole</td>
<td>105</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Synthesis and crystallization</td>
<td>105</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Crystal and molecular structure</td>
<td>105</td>
</tr>
<tr>
<td>4.3</td>
<td>2–(3,4,5–Trimethoxyphenyl)–1–(4–fluorophenyl)–4,5–diphenyl–1H–imidazole</td>
<td>124</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Synthesis and crystallization</td>
<td>124</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Crystal and molecular structure</td>
<td>125</td>
</tr>
</tbody>
</table>
4.4 2-(2-Hydroxy-3-methoxyphenyl)-1-(4-chlorophenyl)-4,5-diphenyl-1H-imidazole .. 143
 4.4.1 Synthesis and crystallization .. 143
 4.4.2 Crystal and molecular structure 143
4.5 2-(2-Hydroxy-3-methoxyphenyl)-1-(4-methylphenyl)-4,5-diphenyl-1H-imidazole 155
 4.5.1 Synthesis and crystallization .. 155
 4.5.2 Crystal and molecular structure 155
4.6 (E)-1-(4-(1-Isobutyl-1H-imidazo[4,5-c]quinolin-4-ylamino)phenyl)-3-phenylprop-2-en-1-one 168
 4.6.1 Synthesis and crystallization .. 168
 4.6.2 Crystal and molecular structure 168

5 Summary 181
 5.1 Quinoline derivatives .. 181
 5.2 Imidazole derivatives .. 188
 5.3 Scope for future work .. 197

Bibliography 198

Publications 206
List of Figures

1.1 Schematic representation of the structure of quinoline. 3
1.2 Schematic representation of the structure of imidazole. 5

2.1 Ewald’s sphere. ... 13
2.2 Overall view of Bruker X8 Proteum X-ray diffractometer. 31
2.3 Bruker X8 Proteum X-ray diffractometer. 31
2.4 κ-geometry goniostat. ... 32
2.5 Schematic representation of rotations associated with κ-geometry. 32
2.6 Platinum135 CCD detector. .. 32
2.7 Torsion Angle ω. .. 36

3.1 Schematic representation of the structure of the molecule. 40
3.2 ORTEP of the molecule with the numbering scheme for non-hydrogen atoms drawn at 50% probability level. 45
3.3 Packing of the molecules when viewed down along the a axis. The dotted lines indicate O–H···O hydrogen bond interactions. 48
3.4 Packing of the molecules when viewed down along the b axis. 48
3.5 Packing of the molecules when viewed down along the c axis. 49
3.6 The bridging of methoxy group and hydroxy group by water molecule and formation of R$_2^2$(4) ring motif. 49
3.7 Schematic representation of the structure of the molecule. 50
3.8 ORTEP of the molecule with numbering scheme for non-hydrogen atoms drawn at 50% probability level. 55
3.9 Packing of the molecules when viewed down along the a axis. The dotted lines represent Br···O interactions. 58
3.10 Packing of the molecules when viewed down along the b axis. 58
3.11 Packing of the molecules when viewed down along the c axis. 59
3.12 Schematic representation of the structure of the molecule. 60
3.13 ORTEP of the molecule with the numbering scheme for non-hydrogen atoms drawn at 50% probability level. 66
3.14 Packing of the molecules when viewed down along the a axis. The dotted lines indicate C–H···Cl hydrogen bond interactions. 69
3.15 Packing of the molecules when viewed down along the b axis. 69
List of Figures

3.16 Packing of the molecules when viewed down along the c axis. 70
3.17 Schematic representation of the structure of the molecule. 71
3.18 ORTEP of the molecule A with displacement ellipsoids for non-
hydrogen atoms drawn at 50% probability level. 79
3.19 ORTEP of the molecule B with displacement ellipsoids for non-
hydrogen atoms drawn at 50% probability level. 80
3.20 Packing of the molecules when viewed down along the a axis. The
dotted lines represent C–H⋯O hydrogen bond interactions. 85
3.21 Packing of the molecules when viewed down along the b axis. 85
3.22 Packing of the molecules when viewed down along the c axis. 86

4.1 Schematic representation of the structure of the molecule. 88
4.2 ORTEP of the molecule A with the numbering scheme for non-
hydrogen atoms drawn at 30% probability level. 97
4.3 ORTEP of the molecule B with the numbering scheme for non-
hydrogen atoms drawn at 30% probability level. 98
4.4 Packing of the molecules when viewed down along the a axis. The
dotted lines represent N—H⋯N hydrogen bond interactions. 103
4.5 Packing of the molecules when viewed down along the b axis. 103
4.6 Packing of the molecules when viewed down along the c axis. 104
4.7 Conformational changes in the structures of A and B. 104
4.8 Schematic representation of the structure of the molecule. 105
4.9 ORTEP of the molecule A with the numbering scheme for non-
hydrogen atoms drawn at 30% probability level. 114
4.10 ORTEP of the molecule B with the numbering scheme for non-
hydrogen atoms drawn at 30% probability level. 115
4.11 Packing of the molecules when viewed down along the a axis. The
dotted lines represent N—H⋯N hydrogen bond interactions. 122
4.12 Packing of the molecules when viewed down along the b axis. 122
4.13 Packing of the molecules when viewed down along the c axis. 123
4.14 Schematic representation of the structure of the molecule. 124
4.15 ORTEP of the molecule A with the numbering scheme for non-
hydrogen atoms drawn at 50% probability level. 133
4.16 ORTEP of the molecule B with the numbering scheme for non-
hydrogen atoms drawn at 50% probability level. 134
4.17 Packing of the molecules when viewed down along the a axis. 141
4.18 Packing of the molecules when viewed down along the b axis. 141
4.19 Packing of the molecules when viewed down along the c axis. 142
4.20 Schematic representation of the structure of the molecule. 143
4.21 ORTEP of the molecule with the numbering scheme for non-hydrogen
atoms drawn at 30% probability level. 149
4.22 Packing of the molecules when viewed down along the a axis. The dotted lines represent Cl···Cl intercontacts. 153
4.23 Packing of the molecules when viewed down along the b axis. 153
4.24 Packing of the molecules when viewed down along the c axis. 154
4.25 Schematic representation of the structure of the molecule. 155
4.26 ORTEP of the molecule with the numbering scheme for non-hydrogen atoms drawn at 30% probability level. 161
4.27 Packing of the molecules when viewed down along the a axis. The dotted lines represent the C–H···O hydrogen bond interactions. 166
4.28 Packing of the molecules when viewed down along the b axis. 166
4.29 Packing of the molecules when viewed down along the c axis. 167
4.30 The bridging of molecules through $R_2^2(4)$ ring motif formed due to the interaction between methyl groups. 167
4.31 Schematic representation of the structure of the molecule. 168
4.32 ORTEP of the molecule with the numbering scheme for non-hydrogen atoms drawn at 50% probability level. 172
4.33 Packing of the molecules when viewed down along the a axis. The dotted lines represent C–H···O hydrogen bond interactions. 179
4.34 Packing of the molecules when viewed down along the b axis. 179
4.35 Packing of the molecules when viewed down along the c–axis. 180

5.1 d_{norm} mapped on the Hirshfeld surface for visualizing the intercontacts of molecules, 1 to 3 (left). Color scale between -0.050 au (blue) and 1.100 au (red). And fingerprint plot of the molecules, 1 to 3 (right). d_i is the distance from a point on the Hirshfeld surface to the nearest nucleus inside the surface and d_e is the distance from a point on the Hirshfeld surface to the nearest nucleus outside the surface. ... 186
5.2 d_{norm} mapped on Hirshfeld surface for visualizing the intercontacts of molecules 4 (left). Color scale between -0.050 au (blue) and 1.100 au (red). And fingerprint plot of the molecule 4 (right). 187
5.3 d_{norm} mapped on the Hirshfeld surface for visualizing the intercontacts of molecules 1 to 2A (left). Color scale between -0.050 au (blue) and 1.100 au (red). And fingerprint plot of the molecules 1 to 2A (right). ... 193
5.4 d_{norm} mapped on the Hirshfeld surface for visualizing the intercontacts of molecules 2B to 3 (left). Color scale between -0.050 au (blue) and 1.100 au (red). And fingerprint plot of the molecules 2B to 3 (right). ... 194
5.5 d_{norm} mapped on the Hirshfeld surface for visualizing the intercontacts of molecules 4 to 6 (left). Color scale between -0.050 au (blue) and 1.100 au (red). And fingerprint plot of the molecules 4 to 6 (right). ... 195