CONTENTS

CHAPTERS

LIST OF TABLES

LIST OF FIGURES

LIST OF MAPS

BIBLIOGRAPHY

PAPER PUBLISHED

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>1.2</td>
<td>OBJECTIVES OF THE STUDY AREA</td>
</tr>
<tr>
<td>1.3</td>
<td>RESEARCH METHODOLOGY</td>
</tr>
<tr>
<td>1.4</td>
<td>LOCATION, EXTENT AND ACCESSIBILITY OF THE STUDY AREA</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Climate</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Physiography</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Forest and Vegetation</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Drainage</td>
</tr>
<tr>
<td>1.4.5</td>
<td>Crops</td>
</tr>
<tr>
<td>1.4.6</td>
<td>Industries</td>
</tr>
<tr>
<td>1.5</td>
<td>SOURCE OF INFORMATION</td>
</tr>
<tr>
<td>1.6</td>
<td>PREVIOUS LITERATURE OF THE STUDY AREA</td>
</tr>
<tr>
<td>1.7</td>
<td>ORGANISATION OF PRESENT WORKS</td>
</tr>
</tbody>
</table>
CHAPTER-2

GEOLOGY AND STRUCTURES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>INTRODUCTION</td>
<td>16-50</td>
</tr>
<tr>
<td>2.2</td>
<td>GEOLOGY OF KARNATAKA</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>GEOLOGY OF PROTEROZOIC BASIN OF KARNATAKA</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>GEOLOGY OF GUNDAL WATERSHED</td>
<td></td>
</tr>
<tr>
<td>2.4.1</td>
<td>Sargur Schist belt</td>
<td></td>
</tr>
<tr>
<td>2.4.1.1</td>
<td>Amphibolite and Hornblende Schist</td>
<td></td>
</tr>
<tr>
<td>2.4.2</td>
<td>Peninsular gneisses</td>
<td></td>
</tr>
<tr>
<td>2.4.3</td>
<td>Charnockite rock formation</td>
<td></td>
</tr>
<tr>
<td>2.4.4</td>
<td>Dolerite dykes and Quartz vein formation</td>
<td></td>
</tr>
<tr>
<td>2.4.4.1</td>
<td>Dolerite dykes formation</td>
<td></td>
</tr>
<tr>
<td>2.4.4.2</td>
<td>Quartz vein formation</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>LINEAMENTS</td>
<td></td>
</tr>
<tr>
<td>2.5.1</td>
<td>Classification of Lineaments</td>
<td></td>
</tr>
<tr>
<td>2.5.2</td>
<td>Lineaments Density</td>
<td></td>
</tr>
<tr>
<td>2.5.3</td>
<td>Rose Diagram</td>
<td></td>
</tr>
<tr>
<td>2.5.4</td>
<td>Lineaments orientation Analysis</td>
<td></td>
</tr>
</tbody>
</table>
2.6 SOIL AND ITS PROPERTIES

2.6.1 Introduction

2.6.2 Composition of soil

2.6.3 TYPES OF SOIL IN THE STUDY AREA

2.6.3.1 Clayey soil

2.6.3.2 Clayey skeletal

2.6.3.3 Fine soil

2.6.3.4 Loamy skeletal soil

2.6.3.5 Fine loamy soil

2.6.3.6 Loamy / sandy soil
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>3.2</td>
<td>DATA SOURCES</td>
</tr>
<tr>
<td>3.3</td>
<td>ANALYSIS OF RAINFALL DATA IN GUNDAL WATERSHED</td>
</tr>
<tr>
<td>3.4</td>
<td>RELATIVE HUMIDITY (Rh)</td>
</tr>
<tr>
<td>3.5</td>
<td>WIND SPEED (U)</td>
</tr>
<tr>
<td>3.6</td>
<td>TEMPERATURE</td>
</tr>
<tr>
<td>3.7</td>
<td>SUNSHINE(n/D)</td>
</tr>
<tr>
<td>3.8</td>
<td>EVAPORATION(E)</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Evapotranspiration (Et)</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Potential Evapotranspiration (Pt)</td>
</tr>
<tr>
<td>3.9</td>
<td>DIFFUSED SOLAR RADIATION (Ra)</td>
</tr>
<tr>
<td>3.10</td>
<td>SURFACE RUNOFF</td>
</tr>
<tr>
<td>3.11</td>
<td>RAINFALL PATTERN OF GUNDAL WATERSHED</td>
</tr>
<tr>
<td>3.12</td>
<td>CLIMATIC CONDITION OF GUNDAL WATERSHED</td>
</tr>
</tbody>
</table>
4.1 INTRODUCTION

4.2 GEOMORPHOLOGY OF GUNDAL WATERSHED

4.2.1 Denudation Hills

4.2.2 Residual Hills

4.2.3 Inselberg

4.2.4 Pediment Inselberg Complex

4.2.5 Dissected Pediment

4.2.6 Pediments

4.2.7 Pediplains

(a) Pediplains Moderately weathered

(b) Shallow Weathered pediplains

4.2.8 Structural Hills

4.2.9 Valley fill

4.3 MORPHOMETRIC ANALYSIS

4.3.1 Drainage

4.3.2 LINEAR ASPECTS

4.3.2.1 Stream order and Stream length

4.3.2.2 Bifurcation ratio

4.3.2.3 Drainage Density

4.3.3 RELIFE RATIO

4.3.4 AERIAL ASPECTS

4.3.4.1 Stream Frequency

4.3.4.2 Drainage Texture
4.3.4.3 Elongation Ratio
4.3.4.4 Form Factor
4.3.4.5 Circularity Ratio

4.4 LAND USE / LAND COVER OF THE GUNDAL WATERSHED

4.4.1 Classification of land use / land cover

4.5 SLOPE OF THE GUNDAL WATERSHED

4.6 GROUNDWATER PROSPECT ZONES OF GUNDAL WATERSHED

4.7 DEVELOPMENT THROUGH WATERSHED
CHAPTER-5

REMOTE SENSING AND GIS

5.1 INTRODUCTION

5.2 PRINCIPLES AND PRACTICES OF REMOTE SENSING

5.2.1 Basic principles

5.2.2 Stages of remote sensing

5.2.3 Electromagnetic spectrum

5.2.4 Wave length regions

5.2.5 Sensors

5.2.6 Resolutions

5.3 INDIAN REMOTE SENSING

5.4 IMPORTANT REMOTE SENSING SATELLITES IN THE WORLD

5.4.1 Worldview-3 Satellite sensor (2014)

5.4.2 Geoeye-2 Satellite sensor (0.34m)

5.4.3 Worldview-3 Satellite sensor (0.46m)

5.4.4 Pleiades 1A & 1B Satellite sensors (0.5m)

5.4.5 Quick Bird satellite Sensor (0.61m)

5.4.6 SPOT-6 AND SPOT-7

5.4.7 GRACE

5.5 GEOINFORMATIC SYSTEM (GIS)

5.5.1 Data representation

5.5.2 Raster

5.5.3 Vector data

5.5.4 Projections and coordinates
5.6 METHODOLOGY

5.6.1 VISUAL IMAGE INTERPRETATION

5.6.1.1 Tone /Colour

5.6.1.2 Texture

5.6.1.3 Size

5.6.1.4 Shape

5.6.1.5 Pattern

5.6.1.6 Association

5.6.1.7 Height

5.6.1.8 Shadow

5.7 EARLIER STUDIES

5.8 REMOTE SENSING APPLICATIONS

5.8.1 Remote Sensing used as tool for regional Geological mapping

5.8.2 Image interpretation for Geomorphology

5.8.3 REMOTE SENSING AS A TOOL IN GROUNDWATER PROSPECT ZONE MAPPING
6.1 INTRODUCTION

6.2 LITHOGY AND QUALITY OF WATER
 6.2.1 Expression of analysis

6.3 MATERIALS AND METHODS
 6.3.1 Processing of data and Accuracy of analysis

6.4 METHODS OF INTERPRETATION
 6.4.1 Total Dissolved Solids (TDS)
 6.4.2 Pie diagram of ppm concentration
 6.4.3 Specific conductance (Electrical Conductivity)
 6.4.4 Index Base Exchange (IBE)
 6.4.5 Groundwater Types
 6.4.6 Sodium Adsorption Ratio (SAR)
 6.4.7 Doneen’s Permeability Index (PI)
 6.4.8 Corrosivity Ratio (CR)
 6.4.9 Groundwater Hardness
 6.4.10 Groundwater Salinity Sodium Hazard
 6.4.11 Saturation indices
 6.4.12 Stuyfzand’s Water types (Based on Chlorine)
 6.4.13 Groundwater facies
 6.4.14 Stuyfzand’s Groundwater types (Based on alkalinity)
6.4.15 Piper Significant Environment

6.4.16 Stuyfzand’s Significant Environment

6.4.17 Mechanisms controlling groundwater chemistry

6.4.18 Residual Sodium Carbonate (RSC)

6.4.19 Metasomatism of Groundwater

6.4.20 Chloroalkaline indices

6.5 pH VALUE OF HYDROGEN ION CONCENTRATION

6.6 CALCIUM (Ca)

6.7 MAGNESIUM (Mg)

6.8 SODIUM (Na)

6.9 POTASSIUM (K)

6.10 CHLORIDE (Cl)

6.11 FLUORIDE (F)

6.12 NITRATE (NO₃)

6.13 SULPHATE (SO₄)

6.14 CARBONATES AND BICARBONATES (CO₃ AND HCO₃)

6.15 IRON (Fe)

6.16 HILL-PIPER DIAGRAM

6.17 STUYFZAND’S CLASSIFICATION AND MAIN WATER TYPES

6.18 CONCLUSION AND RECOMMENDATIONS

6.18.1 Chemical quality and water use

6.18.2 Domestic Use and Irrigation Use
CHAPTER 7
ASSESSMENT OF GROUNDWATER RECHARGE

7.1 INTRODUCTION

7.2 METHODOLOGY

7.2.1 Rainfall infiltration method

7.2.1.1 Rainfall analysis in Gundal watershed

7.2.1.2 Monsoon rainfall in Gundal watershed

7.2.1.3 Non monsoon rainfall in Gundal watershed

7.2.2 Water table fluctuation method

7.2.2.1 Analysis of Hydrographs

7.2.2.2 Groundwater table fluctuation analysis

7.2.2.3 Grid deviation water table

7.3 BASIC DATA FOR GROUNDWATER RECHARGE ASSESSMENT

7.3.1 Well data of Gundal watershed

7.3.2 Population of the Gundal watershed

7.3.3 Groundwater recharge from tank

7.3.4.(a) Groundwater recharge from water conservation structures

7.3.4.(b) Groundwater recharge from Infiltration/percolation structure

7.3.5 Cropping pattern

7.4 GROUNDWATER RECHARGE ASSESSMENT IN GUNDALWATERSHED

7.5 IMPORTANCE OF ARTIFICIAL RECHARGE STRUCTURES IN THE STUDY AREA
CHAPTER-8

INTEGRATED APPROACH

8.1 INTRODUCTION

8.2 INTEGRATED APPROACH USED IN THE PRESENT WORK

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.1</td>
<td>Geology, Lineament, Soil, Topography and Drainage</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Precipitation, Surface runoff and Grid deviation water table</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Grid deviation water table and Transmissibility</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Geology, Aquifer parameter and Hydrogeomorphology</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Lineaments and Aquifer parameters</td>
</tr>
<tr>
<td>8.2.6</td>
<td>Potential Zones, Groundwater Hardness & TDS</td>
</tr>
<tr>
<td>8.2.7</td>
<td>Potential zones and Electrical conductivity</td>
</tr>
<tr>
<td>8.2.8</td>
<td>Grid deviation water table, Index of base exchange and CaCO$_3$ Saturation indices</td>
</tr>
<tr>
<td>8.2.9</td>
<td>Soil, Salinity, Sodium hazard and TDS</td>
</tr>
</tbody>
</table>

8.3 GROUNDWATER POTENTIAL ZONES OF GUNDAL WATERSHED
CHAPTER-9
SUMMARY, CONCLUSION AND RECOMMENDATIONS

9.1 SUMMARY AND CONCLUSION

9.2 RECOMMENDATIONS

BIBLIOGRAPHY

PAPER PUBLISHED