LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>TITLE</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Classification of natural fibers which can be used as reinforcement of polymer</td>
<td>2</td>
</tr>
<tr>
<td>4.1</td>
<td>a): Bamboo shoot and b) Extracted bamboo fibre</td>
<td>29</td>
</tr>
<tr>
<td>4.2</td>
<td>a): Jute plant and b) Extracted jute fibre</td>
<td>29</td>
</tr>
<tr>
<td>4.3</td>
<td>Glass fibre mat</td>
<td>31</td>
</tr>
<tr>
<td>4.4</td>
<td>Steps for synthesis of fibre reinforced plastic skins for sandwich structures</td>
<td>34</td>
</tr>
<tr>
<td>4.5</td>
<td>Schematic representation of preparation of rigid PUF</td>
<td>35</td>
</tr>
<tr>
<td>4.6</td>
<td>Composite skin structures</td>
<td>36</td>
</tr>
<tr>
<td>4.7</td>
<td>Testing machine</td>
<td>37</td>
</tr>
<tr>
<td>4.8</td>
<td>Tensile test specimen</td>
<td>39</td>
</tr>
<tr>
<td>4.9</td>
<td>Tensile test set up</td>
<td>39</td>
</tr>
<tr>
<td>4.10</td>
<td>Test setup for three point bending test</td>
<td>40</td>
</tr>
<tr>
<td>4.11</td>
<td>Flexural test specimen</td>
<td>41</td>
</tr>
<tr>
<td>4.12</td>
<td>ILSS test specimen</td>
<td>42</td>
</tr>
<tr>
<td>4.13</td>
<td>Limiting Oxygen Index (LOI)</td>
<td>42</td>
</tr>
<tr>
<td>4.14</td>
<td>Set up to study the flame retardancy of the skin material</td>
<td>44</td>
</tr>
<tr>
<td>4.15</td>
<td>Water absorption test</td>
<td>45</td>
</tr>
<tr>
<td>4.16</td>
<td>Setup for flammability tests</td>
<td>45</td>
</tr>
<tr>
<td>4.17</td>
<td>Specimens of different sandwich for different tests</td>
<td>48</td>
</tr>
<tr>
<td>4.18</td>
<td>Setup to calculate flat wise compression strength</td>
<td>48</td>
</tr>
<tr>
<td>4.19</td>
<td>Setup to calculate edgewise compression strength</td>
<td>49</td>
</tr>
<tr>
<td>4.20</td>
<td>Flexural testing setup</td>
<td>50</td>
</tr>
<tr>
<td>5.1</td>
<td>Scanning electron micrographs of rigid PUF in the direction parallel to foam rise</td>
<td>52</td>
</tr>
<tr>
<td>5.2</td>
<td>Scanning electron micrographs of rigid PUF in the direction perpendicular to foam rise</td>
<td>53</td>
</tr>
</tbody>
</table>
5.3 T-Distribution of a) peak load and b) modulus of flat compression for different PU foams

5.4 Peak flat wise compression load of PU foam with variable density ratio

5.5 Modulus of flat wise compression for PU foam with variable density ratio (Flat wise compression)

5.6 T-Distribution of a) peak load and b) modulus of Edge compression for different PU foams

5.7 Peak edge compression load of PU foam with variable density ratio for edge compression

5.8 Young’s modulus of PU foam with variable density ratio for edge compression

5.9 T-Distribution of a) bending peak load and b) bending strength for different PU foams

5.10 Peak bending load of PU foam with variable density ratio

5.11 Bending strength of PU foam with variable density ratio

5.12 T-Distribution of a) Flame height, b) Extinguish time and b) Loss of weight for different PU foams

5.13 Flame length of PU foam with variable density ratio

5.14 Extinguish time of PU foam with variable density ratio

5.15 Loss of weight of PU foam with variable density ratio

5.16 T-Distribution of % of water absorption of different PUF exposed to immersion water

5.17 Water absorption as a function of duration of exposure for different density ratio foams

6.1 Typical stress–strain curve of jute and bamboo epoxy composites for different fiber orientation

6.2 Maximum tensile stress of jute and bamboo composites for different fibre orientation

6.3 Strain (%) at maximum strength for jute and bamboo composites for different fibre orientation

6.4 Young’s modulus of jute and bamboo composites for different fibre orientation

6.5 Typical bending stress–bending strain curve for jute and bamboo epoxy composites for different fiber orientation
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6</td>
<td>Variation of flexural strength of jute and bamboo epoxy composites for different fiber orientation</td>
<td>85</td>
</tr>
<tr>
<td>6.7</td>
<td>Variation in strain at maximum bending strength for jute and bamboo epoxy composites for different fiber orientation</td>
<td>86</td>
</tr>
<tr>
<td>6.8</td>
<td>Variation of flexural modulus at 1% strain for jute and bamboo epoxy composites for different fiber orientation</td>
<td>87</td>
</tr>
<tr>
<td>6.9</td>
<td>Variations of flexural modulus at 3% strain for jute and bamboo epoxy composites for different fiber orientation</td>
<td>88</td>
</tr>
<tr>
<td>6.10</td>
<td>Variation of inter laminar shear strength with fiber orientation for jute and bamboo fiber reinforced epoxy composites</td>
<td>89</td>
</tr>
<tr>
<td>6.11</td>
<td>Variation of time for extinguishing of flame for jute and bamboo fiber reinforced epoxy composites</td>
<td>90</td>
</tr>
<tr>
<td>6.12</td>
<td>SEM image of fracture surface of a) Jute / epoxy composites laminates (0/90° fiber orientation), b) Jute / epoxy composites laminates (45/45° fiber orientation) c) bamboo/ epoxy composites laminates (0/90° fiber orientation), d) bamboo / epoxy composites laminates (45/45° fiber orientation)</td>
<td>91</td>
</tr>
<tr>
<td>7.1</td>
<td>Scanning electron micrographs of interface between core and facing</td>
<td>92</td>
</tr>
<tr>
<td>7.2</td>
<td>Elastic flatwise compression loading of different combinations of fibers sandwich structures</td>
<td>93</td>
</tr>
<tr>
<td>7.3</td>
<td>Flatwise a) ultimate compression load and b) ultimate flatwise compression stress for different sandwich structure</td>
<td>95</td>
</tr>
<tr>
<td>7.4</td>
<td>Elastic edgewise compression loading of different combinations of fibres sandwich structures</td>
<td>96</td>
</tr>
<tr>
<td>7.5</td>
<td>Edgewise a) ultimate compression load and b) ultimate flatwise compression stress for different sandwich structure</td>
<td>98</td>
</tr>
<tr>
<td>7.6</td>
<td>Bending load with deflection of 3-point bending for different combinations of sandwich structures</td>
<td>99</td>
</tr>
<tr>
<td>7.7</td>
<td>Edgewise a) peak bending load, b) core shear stress and c) bending stress for different sandwich structure</td>
<td>101</td>
</tr>
<tr>
<td>7.8</td>
<td>Cyclic compressive loading-glass-PU-glass sandwich structure(deflection vs. load)</td>
<td>104</td>
</tr>
<tr>
<td>7.9</td>
<td>Cyclic compressive loading jute-PU-jute sandwich structure (deflection vs. load)</td>
<td>104</td>
</tr>
<tr>
<td>7.10</td>
<td>Cyclic compressive loading bamboo-PU-bamboo sandwich structure (deflection vs. load)</td>
<td>105</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>7.11</td>
<td>Cyclic compressive loading glass-PU-jute sandwich structure (deflection vs. load)</td>
<td>105</td>
</tr>
<tr>
<td>7.12</td>
<td>Cyclic compressive loading-glass-PU-bamboo sandwich structure (deflection vs. load)</td>
<td>106</td>
</tr>
<tr>
<td>7.13</td>
<td>Cyclic compressive loading bamboo-PU-jute sandwich structure (deflection vs. load)</td>
<td>106</td>
</tr>
<tr>
<td>7.14</td>
<td>Effect of number of cycles on deflection of various sandwich structures at 1450 N force</td>
<td>107</td>
</tr>
<tr>
<td>7.15</td>
<td>Water absorption of different sandwich structures</td>
<td>109</td>
</tr>
<tr>
<td>7.16</td>
<td>Water absorption of different sandwich structures after 20 days</td>
<td>110</td>
</tr>
</tbody>
</table>