CONTENTS

1. Introduction ... 01-06

2. Literature review .. 07-17

3. Materials and methods .. 18-60
 A. Treatments
 A.1. Ethanolic leaf extract of Thuja occidentalis
 A.2. Potentized forms of Thuja occidentalis
 A.3. Isolation of bio-active components
 A.4. Quercetin
 A.5. PLGA nanoparticles encapsulated quercetin
 B. Reagents
 B.1. Chemicals
 B.2. Preparation of cell culture media
 B.2.1. Materials for medium preparation
 B.2.2. Medium preparation
 C. Experimental design
 C.1. In vitro study
 C.1.1. Primary cell culture
 C.1.2. Secondary cell culture
 C.2. In vivo study
 D. Experimental protocols
 D.1. For characterization of drug
 D.1.1. For characterization of isolated fraction from Thuja occidentalis
 D.1.1.1. Column chromatography
 D.1.1.2. Thin layer chromatography (TLC)
 D.1.1.3. Mass spectroscopy
 D.1.2. For characterization of nano-PLGA loaded quercetin particles
 D.1.2.1. Particle size determination by dynamic light scattering (DLS)
 D.1.2.2. Atomic force microscopy (AFM)
 D.1.2.3. Fourier transform infrared spectroscopy (FTIR)
 D.2. For in vitro studies
 D.2.1. Cell viability assay
 D.2.2. Cell morphological analysis
 D.2.3. Drug-DNA interaction
 D.2.4. BrdU incorporation assay
 D.2.5. Wound healing assay
 D.2.6. DNA nick generation by DAPI, Hoechst and AO-EB staining assay
 D.2.7. Inter-nucleosomal DNA fragmentation assay
 D.2.8. Comet assay
 D.2.9. TUNEL assay
 D.2.10. Cell cycle analysis after staining with propidium iodide (PI)
 D.2.11. AnnexinV-FITC assay
 D.2.12. Reactive oxygen species (ROS) activity measurement
 D.2.13. Mitochondrial membrane potential (TΨM) measurement
D.2.14. Study on the expressions of genes by semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) at mRNA level
D.2.15. Immunofluorescence studies
D.2.16. Protein expression study by FACS analysis
D.2.17. Cell extract and isolation of total, cytosolic and mitochondrial proteins
D.2.18. Estimation of protein by Bradford method
D.2.19. GSH activity assay
D.2.20. Indirect ELISA
D.2.21. Western blot analysis

D.3. For in vivo studies
D.3.1. Acute and chronic toxicity assays
D.3.2. Tumor bioassay
D.3.3. Scanning electron microscopic (SEM) study
D.3.4. Histological analysis
D.3.5. Confocal microscopic study
D.3.6. Lung cell perfusion and apoptosis related assay
D.3.7. Reactive oxygen species (ROS) activity measurement
D.3.8. Total antioxidant activity measurement by FRAP assay
D.3.9. Antioxidants enzyme assay
D.3.10. Study on the expressions of genes by semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) at mRNA level
D.3.11. Tissue extract and isolation of total and cytosolic proteins
D.3.12. Indirect ELISA
D.3.13. Western blot analysis

E. Statistical analysis

4. Results and discussions 61-128

Chapter 1. Evaluation of anti-cancer potential of ethanolic leaf extract of Thuja occidentalis and its potentized forms against NSCLC in vitro
A. Evaluation of anti-cancer and anti-proliferative potentials of ethanolic leaf extract of Thuja occidentalis (TO) against NSCLC cell line, A549.
B. Cytotoxic efficacy of potentized forms of Thuja occidentalis against A549 cells.
C. Amelioration of Benzo(a)pyrene (BaP) induced normal mice lung cell toxicity by ultra-high dilution of Thuja (Thuja 30C).

Chapter 2. Isolation of flavonols-rich fraction from ethanolic leaf extract of Thuja occidentalis and evaluation of its anti-cancer potential against NSCLC both by in vitro and in vivo studies
A. Apoptotic potential of flavonols-rich fraction (FRF), isolated from ethanolic leaf extract of Thuja occidentalis against NSCLC cell line, A549.
B. Apoptotic and anti-proliferative potentials of flavonols-rich fraction (FRF), isolated from ethanolic leaf extract of Thuja occidentalis against Benzo(a)pyrene induced mice lung carcinogenesis.
Chapter 3. Evaluation of anti-cancer potential of quercetin, a major component of flavonols-rich fraction of *Thuja occidentalis* and its PLGA nano-encapsulated form against NSCLC *in vitro*

A. Apoptotic potential of quercetin against NSCLC cell line, A549.

B. Apoptotic and anti-proliferative potentials of nano-PLGA-encapsulated quercetin against NSCLC cells, A549 and H460.

5. General discussions and conclusion 129-131
6. Summary 132-135
7. References 136-150
8. List of publications 151-153