CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>i - ii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>iv - v</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi - xiii</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1 - 6</td>
</tr>
<tr>
<td>REVIEW OF LITERATURE</td>
<td>7 - 40</td>
</tr>
</tbody>
</table>

1. Wheat vs model plants
2. Fungal pathogens of wheat
3. Glucose oxidase from *Aspergillus niger*
4. AceAMP1 from *Allium cepa*
5. Natural plant defense mechanisms
6. Systemic acquired resistance
7. Biotechnology for enhanced fungal disease resistance
8. Transformation of wheat
9. Selectable markers in gene transfer to wheat
10. Promoters for driving transgene expression in wheat
11. Present scenario of wheat transgenics
12. Transposon tagging in wheat
13. Transgene silencing in wheat

14 Molecular markers in wheat breeding

15. Wheat genomics

THE PRESENT STUDY

Genetic engineering of wheat *Triticum aestivum* L. for enhanced fungal disease resistance

1. INTRODUCTION

2. MATERIALS AND METHODS

 2.1 Plant materials and growth conditions
 2.2 Bacterial cultures and media
 2.3 Yeast cultures and media
 2.4 Isolation of total protein from yeast and purification of AceAMP1
 2.5 Fungal cultures and media
 2.6 Fungal growth inhibition assays
 2.7 Media for plant tissue culture
 2.8 Plasmid constructs
 2.9 Preparation of competent *E. coli* cells
 2.10 *E. coli* transformation
 2.11 Plasmid DNA miniprep
 2.12 Plasmid DNA maxiprep
 2.13 Purification of DNA fragments
 2.14 Plant tissue culture and genetic transformation of wheat
 2.15 Growth of wheat transformants
 2.16 Histochemical GUS assay
Chlorophenol red (CPR) assay
Leaf paint assay
Isolation of genomic DNA from wheat plants
Polymerase Chain Reaction (PCR)
Southern blot analysis
Isolation of total RNA and Reverse transcriptase – polymerase chain reaction (RT-PCR)
Northern blot analysis
Western blot analysis
Enzyme linked immunosorbent assay (ELISA)
Detached leaf assay using *Blumeria graminis f. sp. tritici*
Karnal bunt pathogen assay
Extraction of salicylic acid from wheat leaf material
Measurement of agronomic parameters
Statistical analysis

3. RESULTS

3.1. Antifungal activities of GOX and *Ace-AMP1*

3.2. Optimisation of biolistic gene delivery parameters

3.3. Transient genetic transformation experiments

3.4. Development of genetic transformants of wheat using the gene for *Ace-AMP1*
3.5. Analysis of the putative transformants in the **T₀** generation

3.5.1 Inheritance of the genes for *bar* and *Ace-AMP₁*

3.6. Analysis of putative transformants in the **T₁** generation

3.6.1 *Bar* expression analysis

3.6.2 Inheritance of the genes for *bar* and *Ace-AMP₁*

3.6.3 Integration of the transgenes *bar* and *Ace-AMP₁*

3.6.4 Expression of mRNA for *Ace-AMP₁*

3.6.5 Immunodetection of *Ace-AMP₁* protein in the transgenics

3.7. Analysis of the transgenic lines in the **T₂** generation

3.7.1. *Bar* expression analysis

3.7.2 Inheritance of the genes for *bar* and *Ace-AMP₁*

3.7.3 Integration of the transgenes *bar* and *Ace-AMP₁*

3.7.4 Expression of mRNA for *Ace-AMP₁*

3.7.5. Expression of *Ace-AMP₁* protein in transgenics

3.8. Analysis of genetically engineered plant defense

3.8.1 Enhanced resistance to powdery mildew pathogen

3.8.2 Induction of phenylalanine ammonia lyase (*PAL*)

3.8.3 Variations in levels of salicylic acid (SA)

3.8.4 Induction of pathogenesis-related (*PR*) genes

3.9. Evaluation of agronomic traits
3.10. Genetic transformation of wheat using the gene for GOX 115 - 123

3.10.1. Development of genetic transformants of wheat using the gene for GOX 115 - 117

3.10.2. Analysis of putative transformants in the T₁ generation 117 - 119

3.10.2.1 Bar expression analysis

3.10.2.2 Inheritance of the genes for bar and gox

3.10.2.3 Integration of the transgenes bar and gox

3.10.3. Effect of GOX on growth and development of rice and wheat calli 119 - 120

4. DISCUSSION 124 – 136

4.1 Development of transgenic wheat lines expressing Ace-AMP1

4.2 Induction of defense response genes in transgenic wheat

4.3 Efforts toward generation of transgenic wheat lines expressing GOX

SUMMARY 137 - 140

REFERENCES 141 - 169

PUBLICATIONS 170