LIST OF FIGURES

LEGENDS

1.1 Perodic table 2
1.2 Melt-spinning method of forming the metallic glass 3
1.3 Various techniques of forming amorphous solids 4
1.4 The two general ways of solidifying a melt namely, slow cooling to the crystalline state and the rapid quenching to the amorphous (glassy) state 6
1.5 The variation of the specific heat during crystal ↔ melt and glass transitions for As2S3 sample 7
1.6 Two dimensional continuous random networks of three-folded coordinated elemental glass 8
1.7 Bond counting statistics using RCN and CON models 10
1.8 The Keating potential for bond stretching α and bond bending β terms 11
1.9 Examples of under constrained (Se$_n$), optimally constrained (GeSe$_4$) and over constrained (corner-sharing Ge(Se$_{1.2}$)$_4$) glassy network 13
1.10 Schematic representation of the energy band structure for crystalline semiconductor and amorphous semiconductors 15
1.11 Typical electron band structure model of an a-SC, showing band tailing and states within the mobility gap. E_v and E_c are the mobility edges 16
1.12 Schematic densities of states diagrams for amorphous semiconductors 17
1.13 Bonding schematic for the electronic structure of a tetrahedrally coordinated covalent solid 19
1.14 Schematic representation of the origin of valence and conduction band states for a tetrahedrally bonded semiconductor 20
1.15 Formation of charged dangling bonds from chain ends in a-Se 21
1.16 Configurational coordination diagram of amorphous selenium 22
1.17 The Kastner-Adler-Fritzsche (KAF) model of defects in chalcogenide glasses 24
1.18 Six possible types of negative resistance behaviour observed in amorphous solids 25
The cyclic process which succeeds after the initiation of switching and leads to memory switching.

The time response for a threshold switch and for a memory switch.

Optical transmission curves of oxide, fluoride and chalcogenide glasses.

Different photo-thermal techniques based on the measurement of refractive index change.

The working principle of photo thermal techniques.

Basic components of an FT-IR spectrometer.

Applications of chalcogenide glasses in different fields.

Schematic of the horizontal rotary furnace used for glass preparation.

Typical I-V characteristics of amorphous semiconductor.

The set up for electrical switching studies.

The block diagram of PC based set up for electrical switching studies.

Operating boundaries of Keithley Source-Meter® (model: 2410) at ambient temperature ≤ 30°C.

Schematic of the sample holder for electrical switching studies.

The cross sectional diagram of the cell in a heat-flux DSC.

The heat flux DSC (model: DSC822E) instrument.

DSC scan (10°C/min) of a representative In_{15}Se_{85}Tl_{2} sample.

The typical modulated temperature profile of TMDSC.

The schematic of the Photo-thermal Deflection Spectroscopy (PDS) set up.

FT-IR Spectrometer Perkin Elmer Spectrum GX-5.0.1 model.

XRD patterns of In_{10}Se_{90-x}Tl_{x} series.

XRD patterns of In_{15}Se_{85-x}Tl_{x} series.

I-V characteristics of In_{10}Se_{90-x}Tl_{x} (7 ≤ x ≤ 15) glasses.

I-V characteristics of In_{15}Se_{85-x}Tl_{x} (2 ≤ x ≤ 10) glasses.

Composition dependence of threshold voltages of In_{10}Se_{90-x}Tl_{x} (7 ≤ x ≤ 15) glasses.

The variation of OFF state resistance (R) of the In_{10}Se_{90-x}Tl_{x} (7 ≤ x ≤ 15) glasses with Tl composition.

Composition dependence of threshold voltages of In_{15}Se_{85-x}Tl_{x} (2 ≤ x ≤ 10) glasses.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>The variation of OFF state resistance (R) of the In({15})Se({85-x})Tl(_x) (2 ≤ x ≤ 10) glasses with Tl composition</td>
</tr>
<tr>
<td>3.9</td>
<td>Variation of threshold voltage of a representative samples In({10})Se({77})Tl({13}) and In({15})Se(_{83})Tl(_2) with respect to thickness</td>
</tr>
<tr>
<td>3.10</td>
<td>Variation of threshold voltage for the sample In({10})Se({77})Tl(_{13})</td>
</tr>
<tr>
<td>3.11</td>
<td>Variation of threshold voltage for the sample In({15})Se({79})Tl(_{6})</td>
</tr>
<tr>
<td>4.1</td>
<td>The variation of PDS signal of frequency for a representative In({15})Se({83})Tl(_2) glass</td>
</tr>
<tr>
<td>4.2</td>
<td>A representative plot of the ln (amplitude) Vs sqrt (f) for the samples of In({10})Se({90-x})Tl(_x) series</td>
</tr>
<tr>
<td>4.3</td>
<td>A representative plot of the ln (amplitude) Vs sqrt (f) for the samples of In({15})Se({85-x})Tl(_x) series</td>
</tr>
<tr>
<td>4.4</td>
<td>The variations of α and E(g) in In({10})Se(_{90-x})Tl(_x) glasses (7 ≤ x ≤ 15) with composition/coordination number</td>
</tr>
<tr>
<td>4.5</td>
<td>The composition dependence of α and E(g) of In({15})Se(_{85-x})Tl(_x) glasses</td>
</tr>
<tr>
<td>4.6</td>
<td>Absorption spectra of In({10})Se({90-x})Tl(x) and In({15})Se(_{85-x})Tl(_x) glasses</td>
</tr>
<tr>
<td>4.7</td>
<td>A representative plot of (αhv)(^2) vs. photon energy (hv) for both the series of samples</td>
</tr>
<tr>
<td>5.1</td>
<td>DSC thermogram of In({15})Se({85})Tl(_2) glass sample at a heating rate of (10^º)C/min</td>
</tr>
<tr>
<td>5.2</td>
<td>ADSC thermogram of a representative In({15})Se({85})Tl(_2) glass obtained using Mettler Tolodo Star(^c) software</td>
</tr>
<tr>
<td>5.3</td>
<td>Composition dependence of glass transition temperature (T(g)) of In({10})Se(_{90-x})Tl(_x) (7 ≤ x ≤ 15) glasses</td>
</tr>
<tr>
<td>5.4</td>
<td>Composition dependence of mean bond energy (\langle E\rangle) of In({10})Se({90-x})Tl(_x) (7 ≤ x ≤ 15) glasses</td>
</tr>
<tr>
<td>5.5</td>
<td>Composition dependence of glass transition temperature (T(g)) of In({15})Se(_{85-x})Tl(_x) (2 ≤ x ≤ 10) glasses</td>
</tr>
<tr>
<td>5.6</td>
<td>Composition dependence of mean bond energy (\langle E\rangle) of In({15})Se({85-x})Tl(_x) (2 ≤ x ≤ 10) glasses</td>
</tr>
<tr>
<td>5.7</td>
<td>Composition dependence of crystallization temperatures (T(c)) of In({10})Se(_{90-x})Tl(_x) (7 ≤ x ≤ 15) glasses</td>
</tr>
<tr>
<td>5.8</td>
<td>Composition dependence of crystallization temperatures (T(c)) of In({10})Se(_{90-x})Tl(_x) (7 ≤ x ≤ 15) glasses</td>
</tr>
</tbody>
</table>
In$_{15}$Se$_{85-x}$Tlx$_{x}$ (2 ≤ x ≤ 10) glasses

5.9 Composition dependence of (T$_g$ - T$_c$)°C on In$_{10}$Se$_{90-x}$Tlx$_{x}$ (7 ≤ x ≤ 15) glasses

5.10 Composition dependence of (T$_g$ - T$_c$)°C in In$_{15}$Se$_{85-x}$Tlx$_{x}$ (2 ≤ x ≤ 10) glasses

5.11 DSC thermogram of In$_{15}$Se$_{83}$Tl$_2$ glass at 10°C/min

5.12 Heat capacity of In$_{10}$Se$_{90-x}$Tlx$_{x}$ (7 ≤ x ≤ 15) and In$_{15}$Se$_{85-x}$Tlx$_{x}$ (2 ≤ x ≤ 10) glasses at T$_g$

5.13 Heat capacity of In$_{10}$Se$_{90-x}$Tlx$_{x}$ (7 ≤ x ≤ 15) and In$_{15}$Se$_{85-x}$Tlx$_{x}$ (2 ≤ x ≤ 10) glasses at T$_c$

5.14 Heat capacity of In$_{10}$Se$_{90-x}$Tlx$_{x}$ (7 ≤ x ≤ 15) and In$_{15}$Se$_{85-x}$Tlx$_{x}$ (2 ≤ x ≤ 10) glasses at T$_m$

6.1 The IR transmission spectrum of In$_{10}$Se$_{90-x}$Tlx$_{x}$

6.2 The IR transmission spectrum of In$_{15}$Se$_{85-x}$Tlx$_{x}$

6.3 The variation of percentage of transmittance with thallium content of In$_{10}$Se$_{90-x}$Tlx$_{x}$ and In$_{15}$Se$_{85-x}$Tlx$_{x}$ glassy systems