CONTENTS

List of Tables i
List of Figures ii
Acknowledgement vi
Preface ix
List of papers published/ submitted xiii

1 Glassy Chalcogenides and their properties 1

1.1 Introduction 1
1.2 Chalcogens 1
1.3 Classification of Amorphous Solids 2
1.4 Preparation of Amorphous Solids 3
 1.4.1 Melt Spinning 3
 1.4.2 Furnace Cooling 4
 1.4.3 Melt Quenching 4
 1.4.4 Splat Quenching 4
 1.4.5 The Vapor-Condensation Technique 5
1.5 Glass transition and Glass Forming Ability 5
 1.5.1 Glass transition Phenomenon 5
 1.5.2 Glass Forming Ability 7
1.6 Structural Network in Glassy Semiconductors 8
 1.6.1 Homogeneous Continuous Random Network (CRN) model 8
 1.6.2 The Random Covalent Network (RCN) and Chemically Ordered
 Network (CON) models 9
1.7 Network Topological Thresholds in Glassy Chalcogenides 10
 1.7.1 Rigidity Percolation Threshold or Mechanical threshold 10
 1.7.2 Chemical threshold 14
1.8 Electronic Band Structure of Chalcogenide Glasses 14
 1.8.1 The Cohen-Fritzsche-Ovshinsky (CFO) Model 16
 1.8.2 Davis-Mott Model 17
1.9 Band Model from a Chemical Approach 18
1.10 Defect states in Amorphous Semiconductors 20
 1.10.1 Street and Mott model 21
 1.10.2 Kastner-Adler-Fritzsche (KAF) model 23
1.11 Electrical Switching 25
 1.11.1 Electronic Model 27
 1.11.1.1 Purely Electronic Model 27
 1.11.1.2 Space-Charge Mechanism 27
 1.11.2 Electro-thermal Mechanism 28
1.12 Switching Parameters in Chalcogenide Glasses 29
 1.12.1 Switching Voltage 29
 1.12.2 Switching Time 30
 1.12.3 Delay Time 30
 1.12.4 Holding Current 30
 1.12.5 Lock-on Time 31
 1.12.6 Recovery Time 31
 1.12.7 Set/Reset Time 31
1.13 Factors affecting the Threshold Voltage (Vth) of Chalcogenide glasses 31
 1.13.1 Frequency 31
 1.13.2 Temperature 31
 1.13.3 Sample Thickness 32
1.14 Optical Properties 32
1.15 Thermal Properties 33
1.16 Photo-Thermal Effects in Chalcogenide Glasses 33
1.17 Fourier-Transform Infrared Spectrometers 36
1.18 Applications of Chalcogenide Glasses 37
1.19 Objectives of the Present work 39
 References 40

2 Experimental Techniques 45
 2.1 Introduction 45
 2.2 Preparation of Chalcogenide Glassy Samples 45
2.3 Electrical Switching 47
 2.3.1 Excitation Source 47
 2.3.1.1 Need for Voltage or Current Source 47
2.4 Thermal Analysis 51
 2.4.1 The Differential Scanning Calorimetry 51
 2.4.1.1 Construction and Working 52
 2.4.1.2 Operating Principle 53
 2.4.1.3 Measurements in the Glass Transition Region 54
 2.4.1.4 Limitations of DSC 54
 2.4.2 Temperature Modulated Differential Scanning Calorimetry 55
 2.4.2.1 Calibration and adjustment 57
 2.4.2.2 Experimental procedure 57
2.5 Photo-thermal Deflection Spectroscopy 58
2.6 UV- Visible Optical Spectroscopy 62
2.7 FT-IR Spectroscopy 63
2.8 X-Ray Diffraction Studies 64
 References 65
3 Electrical Switching Behavior of Bulk In-Se-Tl 67
 Chalcogenide Glasses-A Study of Compositional Dependence
3.1 Introduction 68
3.2 Experimental 69
3.3 Results and Discussion 71
 3.3.1 The Switching Behavior of In-Se-Tl bulk glasses 71
 3.3.2 Composition dependence of Threshold Voltage 75
3.4 Thickness dependence of Threshold Voltage 80
3.5 Temperature dependence of Threshold Voltage 81
3.6 Conclusion 83
 References 84
4 Thermal Diffusivity and Optical Band Gap Measurements on In-Se-Tl Glasses 87
4.1 Introduction 88
5 Differential and Alternating Differential Scanning Calorimetry Studies On In-Se-Tl Glasses

5.1 Introduction 104
5.2 Experimental 105
5.3 Results and Discussion 106
 5.3.1 Variation of the glass transition temperature with thallium content 107
 5.3.2 Composition dependence of the crystallization temperature 111
 5.3.3 Measurement of heat capacity ΔC_p at T_g, T_c and T_m 114
5.4 Conclusion 118
References 119

6 FT-IR Studies of impurities in In-Se-Tl Glasses 123

6.1 Introduction 124
6.2 Experimental 124
6.3 Results and Discussion 125
6.4 Conclusion 129
References 130

7 Summary and Scope for Future Work 132

7.1 Studies on $\text{In}_{10}\text{Se}_{90-x}\text{Tl}_x (7 \leq x \leq 15)$ bulk chalcogenide glasses 132
7.2 Studies on $\text{In}_{15}\text{Se}_{85-x}\text{Tl}_x (2 \leq x \leq 10)$ bulk chalcogenide glasses 133
7.3 Scope for Future Work 134