Chapter 7

Bibliography
Ahmad W, Ellar DJ (1990) Directed mutagenesis of selected regions of a *Bacillus thuringiensis* entomocidal protein. FEMS Microbiol Lett 56: 97-104

Ahmad W, Nicholls C, Ellar DJ (1989) Cloning and expression of an entomocidal protein gene from *Bacillus thuringiensis galleriae* toxic to both lepidoptera and diptera. FEMS Microbiol lett 59:197-201


Angus TA (1953) Studies of *Bacillus* spp. pathogenic for silkworm. Progress Report, Forest Biology Division, Canada Department of Science Service 9: 6


Berliner E (1915) Uber die Schlafsueht der Mehlmottenraupe (Ephestia kuhniella Zell) und ihren Erreger Bacillus thuringiensis, n.sp. Z angew Ent 2:29


Ceron J, Covarrubias L, Quintero R et al. (1994) PCR analysis of the cryl insecticidal crystal family genes from *Bacillus thuringiensis*. Appl Environ Microbiol 60:353-356

Chak KF, Chao DC, Tseng MY et al. (1994) Determination and distribution of cry type genes of Bacillus thuringiensis isolated from Taiwan. Appl Environ Microbiol 60: 2415–2420


Choma CT, Surewicz WK, Kaplan H (1991) The toxic moiety of the Bacillus thuringiensis protoxin undergoes a conformational change upon activation. Biochem Biophys Res Commun 179: 933–938


de Maagd RA, Kwa MS, van Der KH, Yamamoto T, et al, (1996a) Domain III substitution in *Bacillus thuringiensis* delta-endotoxin Cry1A(b) results in superior toxicity for *Spodoptera exigua* and altered membrane protein recognition. Appl Environ Microbiol 62: 1537–1543


de Maagd RA, Weemen-Hendriks M, Stiekema WJ, Bosch D (2000) *Bacillus thuringiensis* delta-endotoxin Cry1C domain III can function as a specificity determinant for *Spodoptera exigua* in different, but not all, Cry1-Cry1C hybrids. Appl Environ Microbiol 66: 1559–1563


Donovan WP, Gonzalez JM, Gilbert MP, Dankocsik, CC (1983) Isolation and characterization of EG2158, a new strain of *Bacillus thuringiensis* toxic to coleopteran larvae and nucleotide sequence of toxic gene. Mol Gen Genet 218: 365-372

DOI:10.1371/journal.pone.0001415


Estada U, Ferre J (1994) Binding of insecticidal crystal proteins of Bacillus thuringiensis to the midgut brush border of the cabbage looper, Trichoplusia ni (Hubner) (Lepidoptera: Noctuidae), and selection for resistance to one of the crystal proteins. Appl Environ Microbiol 60: 3840-3846


Ferre J, Real MD, Van Rie J, Jansens S, Peferoen M (1991) Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in midgut membrane receptor. Proc Natl Acad Sci USA 88: 5119-5123


Frankenhuyzen KV (2009) Insecticidal activity of *Bacillus thuringiensis* crystal proteins. J Invertebr Pathol 101:1-16


Garczynski SF, Siegel JP (2007) Bacteria. Lacey LA, Kaya HK Eds. Field Manual of Techniques in Invertebrate Pathology 175-197

Ge AZ, Pflaster RM, Dean DH (1990) Hyperexpression of a *Bacillus thuringiensis* delta-endotoxin-encoding gene in *Escherichia coli*: properties of the product Gene 93: 49-54

Ge AZ, Rivers D, Milne R, Dean DH (1991) Functional domains of *Bacillus thuringiensis* insecticidal crystal proteins. Refinement of *Heliothis virescens* and *Trichoplusia ni* specificity domains on Cry1A(c). J Biol Chem 266: 17954-17958

Ge AZ, Shivarova NI, Dean DH (1989) Location of the *Bombyx mori* specificity domain on a *Bacillus thuringiensis* delta-endotoxin protein. Proc Natl Acad Sci U S A 86: 4037-4041


Gomez I, Dean DH, Bravo A, Sobreron M (2003) Molecular basis for *Bacillus thuringiensis* Cry1Ab toxin specificity: two structural determinants in the *Manduca sexta* Bt-R1 receptor interact with loops alpha-8 and 2 in domain II of Cy1Ab toxin. Biochemistry 42: 10482-10489


Ishiwata S (1901) One of a kind of severe flacherie (sotto disease), Dainihon Sanshi Kaiho 9: 1-5


Knight PJ, Crickmore N, Ellar DJ (1994) The receptor for *Bacillus thuringiensis* Cry1A(c) delta-endotoxin in the brush border membrane of the lepidopteran *Manduca sexta* is aminopeptidase N. Mol Microbiol 11: 429-436

Knowles BH, Ellar DJ (1987) Colloid-osmotic lysis is a general feature of the mechanism of action of *Bacillus thuringiensis* delta-endotoxins with different insect specificity. Biochim Biophys Acta 924: 509-518


Lambert B, Peferoen M (1992) Insecticidal promise of *Bacillus thuringiensis*. Bioscience 42: 112-122


Lee MK, Milne RE, Ge AZ, Dean DH (1992) Location of a *Bombyx mori*: receptor binding region on a *Bacillus thuringiensis* delta-endotoxin. J Biol Chem 267: 3115-3121
Lee MK, You TH, Curtiss A, Dean DH (1996) Involvement of two amino acid residues in the loop region of Bacillus thuringiensis Cry1Ab toxin in toxicity and binding to Lymantria dispar. Biochem Biophys Res Commun 229: 139-146


Liang Y, Dean DH (1994) Location of a lepidopteran specificity region in insecticidal crystal protein Cry1IA from Bacillus thuringiensis. Mol Microbiol 13: 569-575


Raybould A, Quemada H (2010) Bt crops and food security in developing countries: realized benefits, sustainable use and lowering barriers to adoption. Food Sec 2: 247–259


Schnepf E, Crickmore N, Van Rie J, Lereclus D, et al, (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62: 775–806


Siegfried BD, Spencer T, Nearman J (2000) Baseline susceptibility of the corn earworm (Lepidoptera: Noctuidae) to the Cry1Ab toxin from Bacillus thuringiensis. J Econ Entomol 93: 1265-1268


Suzuki MT, Lereclus D, Arantes OMN (2004) Fate of Bacillus thuringiensis strains in different insect larvae. Can J Microbiol 50: 973–975


Thomas WE, Ellar (1983) Bacillus thuringiensis var. israelensis crystal delta-endotoxin: effects on insect and mammalian cells in vitro and in vivo. J Cell Sci 60: 181—197


Van Rie J, Jansen S, Hofte However, Degheele D et al, (1990) Receptors on the brush border membrane of the insect midgut as determinant of the specificity of *Bacillus thuringiensis* delta-endotoxins. Appl Environ Microbiol 56: 1378-85


Zhang X, Candas M, Griko NB, Taussig R, Bulla LA, Jr. (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of *Bacillus thuringiensis*. *Proc Natl Acad Sci USA* 103: 9897-9902
