CHAPTER 8

CONCLUSION

In the present study it is proved that motor and sensory nerve conduction velocity in diabetic neuropathy can be improved with low level laser irradiation. The main morphological features of established neuropathy include a combination of demyelinization and axonal degeneration of myelinated fibers, degeneration with regeneration of unmyelinated fibers, endoneurial microangiopathy, and with nerve fiber loss in its final stage. An increased nerve conduction velocity with selective dosages of laser proves that laser has neuroregenerative effects and by analyzing the results it can be concluded that low level laser of 3-4j/cm² is found to be effective in regeneration of both MNCV & SNCV of experimentally induced diabetic neuropathy as compared with control group and with the dosage of higher energy with 5-8j/cm². The present investigation highlights the possible utility of Helium-Neon Laser with appropriate energy density as an adjunctive modality for diabetic neuropathy in clinical practice.

Recommendations:

Future studies can be done on human subjects with 3-4j/cm² dosage of Laser irradiation on Diabetic Neuropathy.

Functional impairments associated with Diabetic Neuropathy can be also considered for experimentation with Low Level Laser irradiation.