LIST OF FIGURES AND TABLES

GENERAL INTRODUCTION

Scheme 1: A wide spectrum of possible causes for neuropathy

Scheme 2: Mechanisms involved in the development of neuropathy

Scheme 3: Diverse functional roles of spices/ herbal extracts and actives

Fig. 1: Structure of few spice actives

Table 1
DN associated effects in experimental diabetic rodent model

Table 2
Neurotoxic effects of acrylamide in experimental rodent models

Table 3
Effects of acrylamide in in vitro models

Table 4
List of reactive oxygen and nitrogen species and the reactions leading to their formation

Table 5
List of antioxidant/ detoxifying enzymes

Table 6
Common drugs prescribed for management of neuropathic pain

Table 7
Nutrients employed in clinical studies for treatment of neuropathy

Table 8
Some of the effects of spice actives alone or in a defined mixture under neuropathic condition

CHAPTER I

Fig. 1.1
Life cycle of Drosophila melanogaster

Fig. 1.2
Eggs collection and Drosophila melanogaster culture
Fig. 1.3
Assessment of locomotor function in adult flies - negative geotaxis assay (A) and larvae-grid test (B)

Fig. 1.4
Representative photographs of rats displaying gait abnormalities assigned with gait scores

Fig. 1.5
Bilateral sciatic nerve and brain from adult male rat

CHAPTER II

Fig. 2.1
Time course lethality response (A) expressed as percent mortality and incidence of locomotor deficits (B) among adult Drosophila melanogaster exposed to acrylamide (ACR) for 7 days

Fig. 2.2
Perturbations in the levels of oxidative markers in head/body homogenates of among adult male Drosophila melanogaster exposed to acrylamide (ACR) for 72 h

Fig. 2.3
Status of reduced GSH levels and activities of antioxidant enzymes in head/body of among Drosophila melanogaster exposed to acrylamide (ACR) for 72 h

Fig. 2.4
Activity of total ATPase in head/body homogenates of adult male Drosophila melanogaster exposed to acrylamide (ACR) for 72 h

Fig. 2.5
Dopamine levels and activity of AChE in head/body homogenates of adult male Drosophila melanogaster exposed to acrylamide (ACR) for 72 h

Fig. 2.6
Activity levels of Complex I – III (A), Succinate dehydrogenase (B) and MTT reduction (C) in mitochondria of head and body regions among adult male Drosophila melanogaster exposed to acrylamide (ACR) for 72 h

Fig. 2.7
Modulatory effect of isoeugenol (IE) and eugenol (EU) on acrylamide (ACR) induced mortality response (A) and locomotor deficits (B) among adult male Drosophila melanogaster in a co-exposure paradigm
Fig. 2.8
Effect of isoeugenol (IE) and eugenol (EU) on acrylamide (ACR) induced elevation in AChE activity in a co-exposure (72 h) paradigm

Fig. 2.9
Modulatory effect of isoeugenol (IE) and eugenol (EU) on acrylamide (ACR) induced depletion of dopamine levels in a co-exposure (72 h) paradigm

Fig. 2.10
Modulatory effect of geraniol and curcumin on acrylamide (ACR)-induced mortality (A) and locomotor deficits (B) among adult male *Drosophila melanogaster* in a co-exposure paradigm (7 d)

Fig. 2.11
Modulatory effect of geraniol and curcumin against acrylamide (ACR, 5 mM) induced elevation of ROS and hydroperoxide levels in cytosol of adult male *Drosophila melanogaster*

Fig. 2.12
Modulatory effect of geraniol and curcumin on acrylamide (ACR, 5 mM) induced depletion of GSH and TSH in head/ body regions among adult male *Drosophila melanogaster*

Fig. 2.13
Effect of geraniol and curcumin on acrylamide (ACR, 5 mM) induced alterations in hydroperoxides levels and MTT reduction in head/ body regions of adult male *Drosophila melanogaster*

Fig. 2.14
Modulatory effect of geraniol and curcumin on acrylamide (ACR, 5 mM) induced alterations in the activities of succinate dehydrogenase (A) and citrate synthase (B) among adult male *Drosophila melanogaster*

Fig. 2.15
Modulatory effect of geraniol and curcumin on acrylamide (ACR)-induced alterations in the activity of acetylcholinesterase and dopamine levels among adult male *Drosophila melanogaster* in a co-exposure paradigm

Fig. 2.16
Alterations in the activity of AChE and DA levels among III instar larvae of *Drosophila melanogaster* exposed to varying concentrations of acrylamide for 24h

Fig. 2.17
Modulatory effects of isoeugenol and eugenol on the levels of oxidative markers in III instar larvae of *Drosophila melanogaster* exposed to acrylamide
Fig. 2.18
Modulatory effects of isoeugenol and eugenol on acetylcholinesterase activity and dopamine levels in III instar larvae of Drosophila melanogaster exposed to acrylamide

Fig. 2.19
Effect of spice actives on locomotor function (Oregon K) and expression of HSP70 levels (Bg9 strain) in III instar larvae of D. melanogaster co-exposed with acrylamide for 24 h

Table 2.1
Activities of antioxidant enzymes in adult male Drosophila melanogaster exposed to acrylamide (ACR) for 72 h

Table 2.2
Incidence of lethality and locomotor deficits induced by acrylamide (ACR) and its modulation by spice actives in a co-exposure paradigm

Table 2.3
Modulatory effects of isoeugenol (IE) and eugenol (EU) on acrylamide (ACR)- induced oxidative perturbations in head and body regions of adult male Drosophila melanogaster exposed for 72 h

Table 2.4
Effect of geraniol and curcumin (7 d exposure in the medium) on endogenous levels of oxidative markers in head and body homogenates of adult male Drosophila melanogaster

Table 2.5
Effect of geraniol and curcumin (7 d exposure in the medium) on the enzyme activities in head/ body homogenates of adult male Drosophila melanogaster

Table 2.6
Modulatory effect of geraniol and curcumin on the activities of antioxidant enzymes of adult male Drosophila co-exposed with acrylamide (ACR, 5 mM)

Table 2.7
Alterations in the levels of reactive oxygen species, hydroperoxides, nitric oxide and cytosolic calcium among III instar larvae of Drosophila melanogaster exposed to acrylamide (ACR) for 24 h

Table 2.8
Alterations in the MDA, PC and GSH levels among III instar larvae of Drosophila melanogaster exposed to varying concentrations of acrylamide (ACR) for 24 h
Table 2.9
Alterations in the activity levels of antioxidant enzymes among III instar larvae of *Drosophila melanogaster* exposed to varying concentrations of acrylamide for 24h

Table 2.10
Alterations in the oxidative markers and activity levels of mitochondrial enzymes among III instar larvae of *Drosophila melanogaster* exposed to varying concentrations of acrylamide for 24h

Table 2.11
Modulatory effects of isoeugenol (IE) and eugenol (EU) on GSH levels and activities of selected enzymes in III instar larvae of *Drosophila melanogaster* exposed to acrylamide

CHAPTER III

Fig. 3.1
Incidence and progression of neuropathic signs among acrylamide (ACR) administered male rats: Landing foot spread distance (LFSD) measurement (A), Hot hyperalgesia (B) and Narrow beam test (C)

Fig. 3.2
Status of oxidative markers (A) ROS and (B) MDA levels in response to acrylamide (ACR) administration in the sciatic nerve and brain regions of adult male rats

Fig. 3.3
Activity of acetylcholinesterase (A) and dopamine levels (B) in sciatic nerve and brain regions of acrylamide (ACR) administered rats

Fig. 3.4
Ameliorative effect of isoeugenol and eugenol on Gait Score (A) and Landing Foot Spread Distance (LFSD) (B) among acrylamide (ACR) administered rats

Fig. 3.5
Effect of isoeugenol and eugenol on tail immersion hot hyperalgesia (A) and narrow beam test (B) among acrylamide (ACR) administered rats

Fig. 3.6
Attenuation of oxidative markers by isoeugenol and eugenol supplements in sciatic nerve of acrylamide (ACR) administered rats for 5 weeks

Fig. 3.7
Modulatory effect of isoeugenol and eugenol on oxidative markers in cortex and cerebellum of acrylamide (ACR) administered rats for 5 weeks
Fig. 3.8
Modulatory effect of isoeugenol and eugenol on cytosolic Calcium levels (A) and total ATPase activity (B) in sciatic nerve and brain regions of acrylamide (ACR) administered rats

Fig. 3.9
Ameliorative action of isoeugenol and eugenol on the dopamine levels (A) and activity of AChE (B) in sciatic nerve and brain regions of acrylamide (ACR) administered rats

Fig. 3.10
Modulatory effect of curcumin and geraniol on behavioral tests- gait score (A), landing foot spread distance (B) and narrow beam test (C) among acrylamide (ACR) administered rats

Fig. 3.11
Modulatory effect of curcumin and geraniol on sensory functions- hot hyperalgesia (A) and cold allodynia (B) among acrylamide (ACR) administered rats

Fig. 3.12
Ameliorative effect of curcumin and geraniol on levels of Reactive Oxygen Species (A), Malondialdehyde (B) and Hydroperoxides (C) in sciatic nerve and brain regions among acrylamide (ACR) administered rats

Fig. 3.13
Effect of curcumin and geraniol on cytosolic calcium levels (A), activity of AChE (B) and dopamine levels (C) in sciatic nerve and brain regions among ACR administered rats

Fig. 3.14
Effect of curcumin and geraniol on oxidative stress markers- MDA (A), HP (B) and PC (C) in mitochondrial fractions of brain regions among acrylamide (ACR) administered rats

Fig. 3.15
Effect of curcumin and geraniol on mitochondrial function of brain regions among acrylamide (ACR) administered rats

Fig. 3.16
Protective effect of eugenol treatment on behavioral assessments- gait score (A), hot hyperalgesia (B) and cold allodynia (C) among acrylamide (ACR) administered rats

Fig. 3.17
Protective effect of eugenol treatment on landing foot spread distance (A) and narrow beam test (B) among ACR administered rats
Fig. 3.18
Restorative effect of eugenol treatment on the levels of ROS (A) and HP (B) in sciatic nerve and brain regions among ACR administered rats

Fig. 3.19
Effect of eugenol treatment on the levels of MDA (A) and PC (B) in sciatic nerve and brain regions among acrylamide (ACR) administered rats

Fig. 3.20
Restorative effect of eugenol on mitochondrial oxidative markers in brain regions among acrylamide (ACR) administered rats

Fig. 3.21
Restorative effect of eugenol on acetylcholinesterase activity in sciatic nerve and brain regions among acrylamide (ACR) administered rats

Fig. 3.22
Restorative effect of eugenol on the levels of dopamine in sciatic nerve and brain regions among acrylamide (ACR) administered rats

Table 3.1
Effect of isoeugenol on the levels of endogenous oxidative markers in brain regions of adult male rats

Table 3.2
Effect of eugenol on the levels of endogenous oxidative markers in brain regions of adult male rats

Table 3.3
Effect of curcumin on the levels of endogenous oxidative markers in brain regions of adult male rats

Table 3.4
Effect of geraniol on the levels of endogenous oxidative markers in brain regions of adult male rats

Table 3.5
Modulatory effect of isoeugenol and eugenol on the activities of antioxidant enzymes and reduced glutathione levels in sciatic nerve and brain regions of acrylamide (ACR) administered rats for 5 weeks

Table 3.6
Effect of isoeugenol and eugenol on mitochondrial markers in brain regions of acrylamide (ACR) administered rats for 5 weeks
Table 3.7
Effect of curcumin and geraniol on glutathione levels and antioxidant enzymes in sciatic nerve among acrylamide (ACR) administered rats

Table 3.8
Effect of curcumin and geraniol on glutathione levels and antioxidant enzymes in brain regions among acrylamide (ACR) administered rats

Table 3.9
Effect of eugenol treatment on GSH and TSH in sciatic nerve and brain regions among acrylamide (ACR) administered rats

Table 3.10
Effect of eugenol treatment on the activities of antioxidant/ detoxifying enzymes in brain regions among acrylamide (ACR) administered rats

Table 3.11
Effect of eugenol treatment on the activities of antioxidant enzymes in striatum among acrylamide (ACR) administered male rats

Table 3.12
Effect of eugenol on mitochondrial functional enzymes in brain regions among acrylamide (ACR) administered rats

CHAPTER IV

Fig. 4.1
Representative photographs of SHSY5Y cells exposed to varying concentrations of glucose for 24 h: (A) Typical morphology (B) Cell survivability

Fig. 4.2
Photomicrographs of SHSY5Y cells exposed to glucose and spice bio-actives in a co-exposure paradigm (24 h)

Fig. 4.3
Modulatory effect of selected phyto-constituents on the survivability of SHSY5Y cells under hyperglycemia

Fig. 4.4
Protective effect of curcumin on hyperglycemia- associated elevation of Reactive Oxygen Species (A) and Hydroperoxides (B) in SHSY5Y cells

Fig. 4.5
Modulatory effect of eugenol on hyperglycemia- induced elevation of Reactive Oxygen Species (A) and Hydroperoxides (B) in SHSY5Y cells
List of Figures and Tables

Fig. 4.6
Modulatory effect of geraniol on hyperglycemia-induced elevation of Reactive Oxygen Species (A) and Hydroperoxides (B) in SHSY5Y cells

Fig. 4.7
Modulatory effect of spice bio-actives on 3 nitrotyrosine (3-NT) levels in SHSY5Y cell model: Levels of 3-NT (A) and Ratio of 3 NT to β actin (B)

Fig. 4.8
Modulatory effect of spice bio-actives on HSP 70 levels in SHSY5Y cell model: Levels of HSP70 (A) and Ratio of HSP70 to β actin (B)

Fig. 4.9
Modulatory effect of spice bio-actives on the levels neurofilaments (NF) in SHSY5Y cell model: Levels of NF (A) and Ratio of NF to β actin (B)

Fig. 4.10
Progression of neuropathic signs with respect to sensory (A - Hot hyperalgesia; B - Cold allodynia) and motor functions (C) among control and diabetic rats

Fig. 4.11
Levels of reduced glutathione (A), cytosolic calcium (B), dopamine (C) and activity of acetylcholinesterase (D) in the sciatic nerve of diabetic rats

Fig. 4.12
Effect of geraniol supplements on blood glucose levels among diabetic rats

Fig. 4.13
Effect of oral supplements of geraniol on tail immersion tests - hot hyperalgesia (A), cold allodynia (B) and Narrow beam test (C) among control and diabetic rats

Fig. 4.14
Effect of oral supplements of geraniol on oxidative markers in sciatic nerve of control and diabetic rats

Fig. 4.15
Effect of oral supplements of geraniol on oxidative markers in brain regions of control and diabetic rats

Fig. 4.16
Effect of oral supplements of geraniol on oxidative markers in brain regions of control and diabetic rats

Fig. 4.17
Effect of oral supplements of geraniol on cytosolic levels of calcium (A) and NO (B) in sciatic nerve and brain regions of control and diabetic rats
Fig. 4.18
Effect of geraniol supplements on mitochondrial markers: Complex I - III (A), succinate dehydrogenase (B) and citrate synthase (C) in brain regions of control and diabetic rats

Fig. 4.19
Effect of geraniol supplements on dopamine levels (A) and activity of acetylcholinesterase (B) among control and diabetic rats

Fig. 4.20
Modulatory effect of eugenol supplements on body weights (A) and blood glucose levels (B) among diabetic rats in an intervention model

Fig. 4.21
Effect of eugenol supplements on tail immersion tests- hot hyperalgesia (A), cold allodynia (B) and narrow beam test (C) among diabetic rats in an intervention model

Fig. 4.22
Modulatory effect of eugenol supplements on oxidative markers in sciatic nerve (SN) and brain regions of diabetic rats in an intervention model

Fig. 4.23
Effect of eugenol supplements on PC, MDA and Ca2+ levels in sciatic nerve (SN) and brain regions of diabetic rats in an intervention model

Fig. 4.24
Modulatory effect of eugenol supplements on reduced glutathione (A) and total thiols (B) in sciatic nerve (SN) and brain regions in diabetic rats

Fig. 4.25
Effect of eugenol supplements on ROS (A), HP (B) and NO (C) levels in mitochondria of brain regions of diabetic rats in an intervention model

Fig. 4.26
Effect of eugenol supplements on MTT reduction (A), malondialdehyde (B) and protein carbonyls (C) levels in mitochondria of brain regions of diabetic rats in an intervention model

Fig. 4.27
Modulatory effect of eugenol supplements on the activities of complex I – III (A) Succinate dehydrogenase (B) and Citrate synthase (C) in mitochondria of brain regions of diabetic rats in an intervention model

Fig. 4.28
Modulatory effect of eugenol supplements on the activity of acetylcholinesterase in sciatic nerve (SN) and brain regions of diabetic rats in an intervention model of diabetes
List of Figures and Tables

Fig. 4.29
Histological section (LS, H&E) of sciatic nerve showing the effect of eugenol treatment among diabetic rats in an intervention model

Fig. 4.30
Effect of acrylamide intoxication on sensory function- hot hyperalgesia (A) and motor function- narrow beam test (B) among diabetic rats

Fig. 4.31
Effect of acrylamide intoxication on the levels of ROS (A) and HP (B) in sciatic nerve and brain regions of diabetic rats

Fig. 4.32
Effect of acrylamide intoxication on the levels of MDA (A) and PC (B) in sciatic nerve and brain regions of diabetic rats

Fig. 4.33
Effect of acrylamide intoxication on the levels of calcium (A), acetyl cholinesterase activity (B) and dopamine levels (C) in sciatic nerve and brain regions of diabetic rats

Table 4.1
Modulatory effect of curcumin, eugenol and geraniol on glutathione levels (reduced - GSH; oxidized - GSSG) in SHSY5Y cell model

Table 4.2
Status of oxidative stress markers at different sampling times in sciatic nerve of adult rats rendered diabetic with an acute dose of streptozotocin

Table 4.3
Effect of geraniol supplements on body weight gain among diabetic rats

Table 4.4
Effect of geraniol supplements on reduced glutathione (GSH) and activities of Glutathione reductase (GR) and Thioredoxin reductase (TRR) in sciatic nerve and brain regions of control and diabetic rats

Table 4.5
Effect of geraniol supplements on the activity levels of antioxidant/ detoxifying enzymes among control and diabetic rats

Table 4.6
Effect of geraniol supplements on mitochondrial oxidative markers and MTT reduction in control and diabetic rats
Table 4.7
Modulatory effect of eugenol supplements on the activities of selected enzymes in sciatic nerve among diabetic rats in an intervention model

Table 4.8
Effect of eugenol supplements on the activity levels of selected enzymes in cortex and cerebellum of diabetic rats in an intervention model

Table 4.9
Modulatory effect of eugenol supplements on the activities of selected enzymes in striatum and hippocampus among diabetic rats in an intervention model

Table 4.10
Effect of acrylamide intoxication on the activities of antioxidant enzymes in sciatic nerve and brain regions of diabetic rats