Chapter 8

On Special $g_{s\Lambda}$-functions

Introduction

In chapter 8, special functions such as perfectly $g_{s\Lambda}$-continuous function and strongly $g_{s\Lambda}$-continuous function are identified and few of their properties are discussed. It is been proved that perfectly $g_{s\Lambda}$-continuous function is a weaker form of continuous function but stronger form of $g_{s\Lambda}$-continuous function and strongly $g_{s\Lambda}$-continuous function is stronger form of continuous function and $g_{s\Lambda}$-continuous function. Also it is proved that strongly $g_{s\Lambda}$-continuous function is stronger form of perfectly $g_{s\Lambda}$-continuous function.

8.1 Perfectly $g_{s\Lambda}$-continuous function

Definition 8.1.1 A map $f:(X,\tau)\rightarrow(Y,\sigma)$ is called perfectly $g_{s\Lambda}$-continuous function if the inverse image of each open set in Y is $g_{s\Lambda}$-clopen in X.

Theorem 8.1.2 Every continuous function is perfectly $g_{s\Lambda}$-continuous.

Proof: Let a function $f:(X,\tau)\rightarrow(Y,\sigma)$ be continuous and U be a open set in (Y,σ). Then $f^{-1}(U)$ is open in (X,τ). Since $f^{-1}(U)$ is both $g_{s\Lambda}$-open and $g_{s\Lambda}$-closed [by Theorems 2.3.4 and 2.3.5] in (X,τ), f is perfectly $g_{s\Lambda}$-continuous.
Remark 52 Converse of the above Theorem 8.1.2 need not be true as seen from the following example.

Example 60 Let \(X = Y = \{a, b, c, d, e\} \) and \(\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, e\}, \{a, b, d, e\}, \{a, b, c, e\}\} \) and \(\sigma = \{\emptyset, Y, \{a\}, \{a, b\}, \{c, d, e\}, \{a, c, d, e\}\} \). The identity function \(f: (X, \tau) \longrightarrow (Y, \sigma) \) is perfectly \(gs\Lambda \)-continuous, but not continuous. Since \(A = \{c, d, e\} \) is open in \((Y, \sigma) \) but \(f^{-1}(A) = \{c, d, e\} \) is not open in \((X, \tau) \).

Theorem 8.1.3 Every contra continuous function is perfectly \(gs\Lambda \)-continuous.

Proof: Let a function \(f: (X, \tau) \longrightarrow (Y, \sigma) \) be contra continuous and \(U \) be an open set in \((Y, \sigma) \). Then \(f^{-1}(U) \) is closed in \((X, \tau) \). Since \(f^{-1}(U) \) is both \(gs\Lambda \)-open and \(gs\Lambda \)-closed by Theorems 2.1.5 and 2.1.7 \((X, \tau) \), \(f \) is perfectly \(gs\Lambda \)-continuous.

Remark 53 Converse of the above Theorem 8.1.3 need not be true as seen from the following example.

Example 61 Let \(X = Y = \{a, b, c, d, e\} \), \(\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, e\}, \{a, b, d, e\}, \{a, b, c, e\}\} \) and \(\sigma = \{\emptyset, Y, \{a\}, \{a, b\}, \{c, d, e\}, \{a, c, d, e\}\} \). The identity function \(f: (X, \tau) \longrightarrow (Y, \sigma) \) is perfectly \(gs\Lambda \)-continuous, but not contra continuous. Since \(A = \{a\} \) is open in \((Y, \sigma) \) but \(f^{-1}(A) = \{a\} \) is not closed in \((X, \tau) \).

Theorem 8.1.4 Every perfectly \(gs\Lambda \)-continuous function is \(gs\Lambda \)-continuous function.

Proof: Let a function \(f: (X, \tau) \longrightarrow (Y, \sigma) \) be perfectly \(gs\Lambda \)-continuous and \(U \) be an open set in \((Y, \sigma) \). Then \(f^{-1}(U) \) is \(gs\Lambda \)-clopen in \((X, \tau) \) as \(f \) is perfectly \(gs\Lambda \)-continuous. That is \(f^{-1}(U) \) is both \(gs\Lambda \)-open and \(gs\Lambda \)-closed in \((X, \tau) \). Thus \(f \) is \(gs\Lambda \)-continuous.
Remark 54 Converse of the above Theorem 8.1.4 need not be true as seen from the following example.

Example 62 Let $X = Y = \{a, b, c, d, e\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, e\}, \{a, b, d, e\}, \{a, b, c, d\}, \{a, b, c, e\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}, \{a, b, c, d\}\}$. The identity function $f:(X, \tau) \rightarrow (Y, \sigma)$ is gsΛ-continuous, but not perfectly gsΛ-continuous function. Since $A = \{b, c, d\}$ is open in (Y, σ), but $f^{-1}(A) = \{b, c, d\}$ is not gsΛ-clopen in (X, τ).

Theorem 8.1.5 Every perfectly gsΛ-continuous function is contra gsΛ-continuous function.

Proof: Proof follows directly from Definition.

Remark 55 Converse of the above Theorem 8.1.5 need not be true as seen from the following example.

Example 63 Let $X = Y = \{a, b, c, d, e\}$,
$\tau = \{\emptyset, X, \{a\}, \{b\}, \{c, d\}, \{d, e\}, \{a, d\}, \{c, d, e\}, \{a, c, d\}, \{a, d, e\}, \{a, c, d, e\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. The identity function $f:(X, \tau) \rightarrow (Y, \sigma)$ is contra gsΛ-continuous, but not perfectly gsΛ-continuous function.

Theorem 8.1.6 A function $f:(X, \tau) \rightarrow (Y, \sigma)$ is perfectly gsΛ-continuous if and only if f is both gsΛ-continuous and contra gsΛ-continuous.

Proof: **Necessary:** Let U be an open set in (Y, σ) and f be both gsΛ-continuous and contra gsΛ-continuous. Since f is both gsΛ-continuous and contra gsΛ-continuous $f^{-1}(U)$ is both gsΛ-open and gsΛ-closed in (X, τ). Thus f is perfectly gsΛ-continuous.

Sufficient: Let U be an open set in (Y, σ) and f be perfectly gsΛ-continuous. Then $f^{-1}(U)$ is gsΛ-clopen. Hence f is both gsΛ-continuous and contra gsΛ-continuous.
Theorem 8.1.7 A function $f:(X,\tau)\to (Y,\sigma)$ is perfectly gs\(\Lambda\)-continuous if f is both continuous and contra continuous.

The proof follows directly as every open set is $gs\Lambda$-open and every closed set is $gs\Lambda$-closed.

Theorem 8.1.8 A function $f:(X,\tau)\to (Y,\sigma)$ is perfectly $gs\Lambda$-continuous if f is both λ-continuous and contra λ-continuous.

Proof: The proof follows directly as every λ-open set is $gs\Lambda$-open and every λ-closed set is $gs\Lambda$-closed.

Theorem 8.1.9 If a function $f:(X,\tau)\to (Y,\sigma)$ is a g continuous(\hat{g} continuous and gs continuous) and (X,τ) is a $T_{1/2}$ space (resp.$T\hat{g}$ space,T_b space) then $f:(X,\tau)\to (Y,\sigma)$ is perfectly $gs\Lambda$-closed function.

Proof: Let F is a closed set in (Y,σ). Since f is g continuous(\hat{g} continuous and gs continuous),$f^{-1}(F)$is g closed (\hat{g} closed, gs closed) in (X,τ). As (X,τ) is a $T_{1/2}$ space (resp.$T\hat{g}$ space,T_b space), we have $f^{-1}(F)$ is closed in (X,τ), Hence $f^{-1}(F)$ is a $gs\Lambda$- open and $gs\Lambda$-closed in Y as every closed set is $gs\Lambda$- open and $gs\Lambda$-closed. Thus f is a perfectly $gs\Lambda$-continuous function.

Remark 56 Composition of perfectly $gs\Lambda$-continuous functions is not perfectly $gs\Lambda$-continuous.

Example 64 Let $X = Y ={a,b,c,d,e}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,b,c\}\}$, $\sigma = \{\emptyset, Y, \{a\}, \{e\}, \{a,e\}, \{b,c\}, \{b,d\}, \{b,d,e\}, \{a,b,c,d\}\}$. $(Z, \eta) = \{\emptyset,Z,\{a\},\{b\},\{c\}\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}$. $f:X\to Y$ and $g:Y\to Z$ are perfectly $gs\Lambda$-continuous functions but $gof:X\to Z$ is not perfectly $gs\Lambda$-continuous function as $A = \{c\}$ is open in Z, but $(gof)^{-1}(\{c\})= \{c\}$ is not $gs\Lambda$ clopen in X.

Theorem 8.1.10 A map $f:(X,\tau)\to (Y,\sigma)$ is called perfectly $gs\Lambda$-continuous function if the inverse image of each closed set in Y is $gs\Lambda$- clopen in X.

110
Proof: Proof follows from the definition 8.1.1 and the concept of complementary sets.

8.2 Strongly gsΛ-continuous function

Definition 8.2.1 A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is called strongly gsΛ-continuous function if the inverse image of each gsΛ-closed set in Y is closed in X.

Theorem 8.2.2 A function $f:(X,\tau) \rightarrow (Y,\sigma)$ is called strongly gsΛ-continuous function if the inverse image of each gsΛ-open set in Y is open in X.

Proof: Proof follows from the definition 8.2.1 and the concept of complementary sets.

Theorem 8.2.3 Every strongly gsΛ-continuous function is continuous function.

Proof: Let a function $f:(X,\tau) \rightarrow (Y,\sigma)$ is strongly gsΛ-continuous function and U be a open set in (Y,σ), then U is gsΛ-open in (Y,σ). Since f is strongly gsΛ-continuous function, $f^{-1}(U)$ is open in (X,τ). Hence f is continuous.

Remark 57 Converse of the above Theorem 8.2.3 need not be true as seen from the following example.

Example 65 Let $X = Y = \{a,b,c,d,e\}$, $\tau = \{\emptyset, X, \{a\}, \{b,c\}, \{d,e\}, \{a,b,c\}, \{a,d,e\}, \{b,c,d,e\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b,c\}, \{a,b,c\}, \{b,c,d,e\}\}$. The identity function $f:(X,\tau) \rightarrow (Y,\sigma)$ is continuous function, but not strongly gsΛ-continuous function. Since $A=\{c\}$ is gsΛ-closed in (Y, σ), but $f^{-1}(A)=\{c\}$ is not closed in (X,τ).

Theorem 8.2.4 Every strongly gsΛ-continuous function is contra continuous function.

Proof: Let a function $f:(X,\tau) \rightarrow (Y,\sigma)$ is strongly gsΛ-continuous and U be
a closed set in (Y,σ), then U is $gs\Lambda$-open in (Y,σ) by theorem 2.3.5. Since f is strongly $gs\Lambda$-continuous function, $f^{-1}(U)$ is open in (X,τ). Hence f is contra continuous.

Remark 58 Converse of the above Theorem 8.2.4 need not be true as seen from the following example.

Example 66 Let $X = Y = \{a,b,c,d,e\}$, $\tau = \{\emptyset, X, \{a\}, \{b,c\}, \{d,e\}, \{a,b,c\}, \{a,d,e\}, \{b,c,d,e\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b,c\}, \{a,b,c\}, \{b,c,d,e\}\}$. The identity function $f:(X,\tau) \to (Y,\sigma)$ is contra continuous function, but not strongly $gs\Lambda$-continuous function. Since $A = \{c\}$ is $gs\Lambda$-closed in (Y,σ), but $f^{-1}(A) = \{c\}$ is not closed in (X,τ).

Theorem 8.2.5 Every strongly $gs\Lambda$-continuous function is $gs\Lambda$-continuous function.

Proof: Let a function $f:(X,\tau) \to (Y,\sigma)$ be strongly $gs\Lambda$-continuous and U be a open set in (Y,σ), then U is $gs\Lambda$-open in (Y,σ). Since f is strongly $gs\Lambda$-continuous function, $f^{-1}(U)$ is open in (X,τ). Since every open set is $gs\Lambda$-open, $f^{-1}(U)$ is $gs\Lambda$-open in (X,τ). Hence f is $gs\Lambda$-continuous.

Remark 59 Converse of the above Theorem 8.2.5 need not be true as seen from the following example.

Example 67 Let $X = Y = \{a,b,c,d,e\}$, $\tau = \{\emptyset, X, \{a\}, \{b,c\}, \{d,e\}, \{a,b,c\}, \{a,d,e\}, \{b,c,d,e\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b,c\}, \{a,b,c\}, \{b,c,d,e\}\}$. The identity function $f:(X,\tau) \to (Y,\sigma)$ is $gs\Lambda$-continuous function, but not strongly $gs\Lambda$-continuous function. Since $A = \{c\}$ is $gs\Lambda$-closed in (Y,σ), but $f^{-1}(A) = \{c\}$ is not closed in (X,τ).

Theorem 8.2.6 Every strongly $gs\Lambda$-continuous function is contra $gs\Lambda$-continuous function.
Proof: Let a function \(f:(X,\tau) \rightarrow (Y,\sigma) \) be strongly gs\(\Lambda \)-continuous and \(U \) be an open set in \((Y,\sigma) \), then \(U \) is gs\(\Lambda \)-open in \((Y,\sigma) \). Since \(f \) is strongly gs\(\Lambda \)-continuous function, \(f^{-1}(U) \) is open in \((X,\tau) \). Since every open set is gs\(\Lambda \)-closed, \(f^{-1}(U) \) is gs\(\Lambda \)-closed in \((X,\tau) \). Hence \(f \) is contra gs\(\Lambda \)-continuous.

Remark 60 Converse of the above Theorem 8.2.6 need not be true as seen from the following example.

Example 68 Let \(X = Y = \{a,b,c,d,e\} \) and \(\tau = \{\emptyset, X, \{a\}, \{b,c\}, \{d,e\}, \{a,b,c\}, \{a,d,e\}, \{b,c,d,e\}\} \), and \(\sigma = \{\emptyset, Y, \{a\}, \{b,c\}, \{a,b,c\}, \{b,c,d,e\}\} \). The identity function \(f:(X,\tau) \rightarrow (Y,\sigma) \) is contra gs\(\Lambda \)-continuous function, but not strongly gs\(\Lambda \)-continuous function. Since \(A=\{c\} \) is gs\(\Lambda \)-closed in \((Y,\sigma) \), but \(f^{-1}(A) = \{c\} \) is not closed in \((X,\tau) \).

Theorem 8.2.7 Every strongly gs\(\Lambda \)-continuous function is gs\(\Lambda \)-irresolute function.

Proof: Let a function \(f:(X,\tau) \rightarrow (Y,\sigma) \) be strongly gs\(\Lambda \)-continuous and \(U \) be a gs\(\Lambda \)-open set in \((Y,\sigma) \). Since \(f \) is strongly gs\(\Lambda \)-continuous function, \(f^{-1}(U) \) is open in \((X,\tau) \). Since every open set is gs\(\Lambda \)-open, \(f^{-1}(U) \) is gs\(\Lambda \)-open in \((X,\tau) \). Hence \(f \) is gs\(\Lambda \)-irresolute.

Remark 61 Converse of the above Theorem 8.2.7 need not be true as seen from the following example.

Example 69 Let \(X = Y = \{a,b,c,d,e\} \), \(\tau = \{\emptyset, X, \{a\}, \{b,c\}, \{d,e\}, \{a,b,c\}, \{a,d,e\}, \{b,c,d,e\}\} \), and \(\sigma = \{\emptyset, Y, \{a\}, \{b,c\}, \{a,b,c\}, \{b,c,d,e\}\} \). The identity function \(f:(X,\tau) \rightarrow (Y,\sigma) \) is gs\(\Lambda \)-irresolute function, but not strongly gs\(\Lambda \)-continuous function. Since \(A=\{c\} \) is gs\(\Lambda \)-closed in \((X,\tau) \), but \(f^{-1}(A) = \{c\} \) is not closed in \((X,\tau) \).
Theorem 8.2.8 Every strongly gsΛ-continuous function is λ-continuous function.

Proof: Let a function $f:(X,\tau)\rightarrow (Y,\sigma)$ is a strongly gsΛ-continuous function and U be a open set in (Y,σ), which is by definition gsΛ-open set in (Y,σ). Since f is strongly gsΛ-continuous function, $f^{-1}(U)$ is open in (X,τ). Since every open set is λ-open, $f^{-1}(U)$ is λ-open in (X,τ). Hence f is λ-continuous function.

Remark 62 Converse of the above Theorem 8.2.8 need not be true as seen from the following example.

Example 70 Let $X = Y = \{a,b,c,d,e\}$, $\tau = \{\emptyset, X, \{a\}, \{b,c\}, \{d,e\}, \{a,b,c\}, \{a,d,e\}, \{b,c,d,e\}\}$, and $\sigma= \{\emptyset,Y,\{a\},\{b,c\},\{a,b,c\},\{b,c,d,e\}\}$. The identity function $f:(X,\tau)\rightarrow (Y,\sigma)$ is λ-continuous function, but not strongly gsΛ-continuous function. Since $A=\{c\}$ is gsΛ-closed in (Y,σ), but $f^{-1}(A) = \{c\}$ is not closed in (X,τ).

Theorem 8.2.9 Every strongly gsΛ-continuous function is λ- irresolute function.

Proof: Let a function $f:(X,\tau)\rightarrow (Y,\sigma)$ is a strongly gsΛ-continuous function and U be a λ-open set in (Y,σ), which is by definition gsΛ-open set in (Y,σ). Since f is strongly gsΛ-continuous function, $f^{-1}(U)$ is open in (X,τ). Since every open set is λ-open, $f^{-1}(U)$ is λ-open in (X,τ). Hence f is λ- irresolute function.

Remark 63 Converse of the above Theorem need 8.2.9 not be true as seen from the following example.

Example 71 Let $X = Y = \{a,b,c,d,e\}$, $\tau = \{\emptyset, X, \{a\}, \{b,c\}, \{d,e\}, \{a,b,c\}, \{a,d,e\}, \{b,c,d,e\}\}$ and $\sigma= \{\emptyset,Y,\{a\},\{b,c\},\{a,b,c\},\{b,c,d,e\}\}$. The identity function $f:(X,\tau)\rightarrow (Y,\sigma)$
is \(\lambda \)- irresolute function, but not strongly \(g_{s\Lambda} \)-continuous function. Since \(A = \{ c \} \) is \(g_{s\Lambda} \)-closed in \((Y, \sigma)\), but \(f^{-1}(A) = \{ c \} \) is not closed in \((X, \tau)\).

Theorem 8.2.10 Every strongly \(g_{s\Lambda} \)-continuous function is perfectly \(g_{s\Lambda} \)-continuous function.

Proof: Let a function \(f:(X, \tau) \longrightarrow (Y, \sigma) \) be strongly \(g_{s\Lambda} \)-continuous and \(U \) be a open set in \((Y, \sigma)\). By Theorem 2.3.4 \(U \) is \(g_{s\Lambda} \)-open in \((Y, \sigma)\). Since \(f \) is strongly \(g_{s\Lambda} \)-continuous function, \(f^{-1}(U) \) is open in \((X, \tau)\). Since every open set is \(g_{s\Lambda} \)-closed and \(g_{s\Lambda} \)-closed, \(f^{-1}(U) \) is \(g_{s\Lambda} \)-clopen in \((X, \tau)\). Hence \(f \) is perfectly \(g_{s\Lambda} \)-continuous.

Remark 64 Converse of the above Theorem need 8.2.10 not be true as seen from the following example.

Example 72 Let \(X = Y = Z = \{ a, b, c, d, e \} \), \(\tau = \{ \emptyset, X, \{ a \}, \{ b \}, \{ a, b \}, \{ b, c \}, \{ a, b, c \}, \{ b, c, d \}, \{ b, c, d, e \} \} \), and \(\sigma = \{ \emptyset, Y, \{ a \}, \{ e \}, \{ a, e \}, \{ b, c, d \}, \{ b, c, d, e \}, \{ a, b, c, d \} \} \). Here the identity function \(f:(X, \tau) \longrightarrow (Y, \sigma) \) is perfectly \(g_{s\Lambda} \)-continuous function but not strongly \(g_{s\Lambda} \)-continuous, since \(A = \{ c \} \) is \(g_{s\Lambda} \)-closed in \((Y, \sigma)\), but \(f^{-1}(A) = \{ c \} \) is not closed in \((X, \tau)\).

Theorem 8.2.11 Composition of strongly \(g_{s\Lambda} \)-continuous functions is strongly \(g_{s\Lambda} \)-continuous.

Proof: Let a function \(f:(X, \tau) \longrightarrow (Y, \sigma) \) be strongly \(g_{s\Lambda} \)-continuous and a function \(g:(Y, \sigma) \longrightarrow (Z, \eta) \) be strongly \(g_{s\Lambda} \)-continuous and \(U \) be a open set in \((Z, \eta)\). By Theorem 2.3.4 \(U \) is \(g_{s\Lambda} \)-open in \((Z, \eta)\). Since \(g \) is strongly \(g_{s\Lambda} \)-continuous function, \(g^{-1}(U) \) is open in \((Y, \sigma)\). Now by Theorem 2.3.4 \(g^{-1}(U) \) is \(g_{s\Lambda} \)-open in \((Y, \sigma)\). Since \(f \) is strongly \(g_{s\Lambda} \)-continuous function, we get \(f^{-1}(g^{-1}(U)) = (gof)^{-1}(U) \) is open in \((X, \tau)\). Thus the theorem.

Hence we can conclude that strongly \(g_{s\Lambda} \)-continuous function is the strong form.