Chapter 5

Contra $gs\Lambda$-continuous function

Introduction

The notion of contra continuous[15] functions was introduced and investigated by Dontchev. Another class of function called contra $gs\Lambda$-continuous function is introduced in this chapter. This new class contains the class of contra continuous and contra λ-continuous functions. In this chapter some of the separation axioms like $gs\Lambda$-T_0 and $gs\Lambda$-T_1 are introduced. In addition some special spaces like $gs\Lambda$-Urysohn space and $gs\Lambda$-Hausdorff space are also introduced and investigated their properties. Strongly $gs\Lambda$ closed graph is also introduced.

5.1 Properties of contra $gs\Lambda$-continuous function

Definition 5.1.1 A map $f:(X,\tau)\rightarrow(Y,\sigma)$ is called contra $gs\Lambda$-continuous map if $f^{-1}(V)$ is $gs\Lambda$-closed in (X,τ) for each open set in V of (Y,σ).

Theorem 5.1.2 A map $f:(X,\tau)\rightarrow(Y,\sigma)$ is contra $gs\Lambda$-continuous map if and only if the inverse image of each closed set in Y is $gs\Lambda$- open in X.

Proof: Let U be a closed set in Y. Then $(X\setminus U)$ is open in Y. By definition $f^{-1}(X\setminus U)=Y\setminus f^{-1}(U)$ is $gs\Lambda$-closed in X. Thus $f^{-1}(U)$ is $gs\Lambda$- open in X.

Converse part follows from Definition 5.1.1.

Definition 5.1.3 A topological space \((X, \tau)\) is said to be a \(gs\Lambda\)-space if the union (intersection) of \(gs\Lambda\)-closed \((gs\Lambda\)-open\) sets is \(gs\Lambda\)-closed \((gs\Lambda\)-open\) and the intersection (union) of \(gs\Lambda\)-closed \((gs\Lambda\)-open\) sets is \(gs\Lambda\)-closed \((gs\Lambda\)-open\).

Theorem 5.1.4 For a bijective function \(f:(X, \tau) \rightarrow (Y, \sigma)\), the following are equivalent. Assume that \((X, \tau)\) is a \(gs\Lambda\)-space.

1. \(f\) is contra \(gs\Lambda\) continuous.

2. For every closed subset \(F\) of \(Y\), \(f^{-1}(F)\) is \(gs\Lambda\)-open in \(X\).

3. For each \(x \in X\) and each closed subset \(F\) of \(Y\) with \(f(x) \in F\), there exist a \(gs\Lambda\)-open set \(U\) of \(X\) with \(x \in U\), \(f(U) \subseteq F\).

4. \(f(gs\Lambda \text{Cl}(A)) \subseteq \ker(f(A))\) for every subset \(A\) of \(X\).

5. \(gs\Lambda \text{Cl}(f^{-1}(B)) \subseteq f^{-1}(\ker(B))\) for every subset \(B\) of \(Y\).

Proof: (1) \(\implies\) (2)

It follows from Theorem 5.1.2.

(2) \(\implies\) (3)

Let \(F\) be any closed subset of \(Y\) and let \(f(x) \in F\) where \(x \in X\). Then by (2) \(f^{-1}(F)\) is \(gs\Lambda\)-open in \(X\). Also \(x \in f^{-1}(F)\). Let \(U = f^{-1}(F)\). Then \(U\) is \(gs\Lambda\)-open set containing \(x\) and \(f(U) \subseteq F\).

(3) \(\implies\) (2)

Let \(F\) be any closed subset of \(Y\). If \(x \in f^{-1}(F)\), then \(f(x) \in F\). Hence by (3), there exist a \(gs\Lambda\)-open set \(U_x\) of \(X\) with \(x \in U_x\) such that \(f(U_x) \subseteq F\). Then \(f^{-1}(F) = \bigcup \{U_x : x \in f^{-1}(F)\}\) and hence by assumption \(f^{-1}(F)\) is \(gs\Lambda\)-open in \(X\).
Let A be any subset of X. Let $y \in f(gs \Lambda \text{Cl}(A))$ and suppose that $y \notin \text{ker}(f(A))$. Then by Lemma [1.1.3] there exist $V \in C(Y,y)$ such that $f(A) \cap V = \emptyset$. Thus we have $A \cap f^{-1}(V) = \emptyset$. Since $f^{-1}(V)$ is $gs \Lambda$- open by (2), we have $gs \Lambda \text{cl}(A) \cap f^{-1}(V) = \emptyset$. Hence we get $f(gs \Lambda \text{Cl}(A)) \cap V = \emptyset$. So $y \notin f(gs \Lambda \text{Cl}(A))$ is a contradiction. Thus $y \in \text{ker}(f(A))$, which implies that $f(gs \Lambda \text{cl}(A)) \subset \text{ker}(f(A))$.

(4) \implies (5)

Let F be any subset of Y. By (4), we have $f(gs \Lambda Cl(f^{-1}(F))) \subset \text{ker}(f(F))$ and $gs \Lambda cl(f^{-1}(F)) \subset f^{-1}(\text{ker}(F))$.

(5) \implies (1)

Let U be any open set of Y. Then $gs \Lambda Cl(f^{-1}(U)) \subset f^{-1}(\text{ker}(U)) = f^{-1}(U)$ and $gs \Lambda \text{Cl}(f^{-1}(U)) = f^{-1}(U)$. By assumption $f^{-1}(U)$ is $gs \Lambda$-closed in X. This shows that f is contra $gs \Lambda$-continuous.

Theorem 5.1.5 Every continuous function is contra $gs \Lambda$-continuous.

Proof: Let F be a closed set in (Y,σ) and a function $f:(X,\tau) \rightarrow (Y,\sigma)$ be a continuous function. Hence $f^{-1}(F)$ is closed in (X,τ). As every closed set is $gs \Lambda$- open set by Theorem 2.3.5, we have $f^{-1}(F)$ is $gs \Lambda$- open in X. Thus f is contra $gs \Lambda$-continuous.

Remark 31 Converse of the above Theorem 5.1.5 need not be true as seen from the following example.

Example 37 Let $X = Y = \{a,b,c,d,e\}$, $\tau = \{\emptyset,X,\{a\}, \{b\}, \{a,b\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}, \{c,d,e\}, \{a,b,c,d\}, \{a,c,d,e\}, \{b,c,d,e\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a,b\}, \{a,b,e\}, \{a,b,d,e\}, \{a,b,c,e\}\}$. The identity function $f:(X,\tau) \rightarrow (Y,\sigma)$ is a contra $gs \Lambda$-continuous function but not continuous functions as $A = \{c\}$ is closed in (Y,σ) but $f^{-1}(A) = \{c\}$ is not closed in (X,τ).

58
Remark 32 **Theorem 5.1.6** Every contra continuous function is contra gsΛ-continuous.

Proof: Proof follows as every open set is gsΛ-open set by Theorem 2.3.4.

Remark 33 Converse of the above Theorem 5.1.6 need not be true as seen from the following example.

Example 38 Let $X = Y = \{a, b, c, d, e\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{b, c, d\}, \{a, b, c, d\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. The identity function $f: (X, \tau) \rightarrow (Y, \sigma)$ is contra gsΛ-continuous but not contra continuous as $A = \{c\}$ is closed in (Y, σ) but $f^{-1}(A) = \{c\}$ is not open in (X, τ).

Theorem 5.1.7 If a function $f: (X, \tau) \rightarrow (Y, \sigma)$ is contra gsΛ-continuous and (X, τ) is T_1 and λ-space then f is contra continuous.

Proof: Let F be a closed set in (Y, σ) and a function $f: (X, \tau) \rightarrow (Y, \sigma)$ be contra gsΛ-continuous, where (X, τ) is T_1 and λ-space. Hence $f^{-1}(F)$ is gsΛ-open in (X, τ). Since (X, τ) is T_1 space $f^{-1}(F)$ is λ-open in X. Also since (X, τ) is a λ-space $f^{-1}(F)$ is open in X by Lemma 1.1.9. Thus f is contra continuous.

Theorem 5.1.8 If a function $f: (X, \tau) \rightarrow (Y, \sigma)$ is contra gsΛ-continuous and (X, τ) is T_1 and λ-S-space then f is contra semi continuous.

Proof: Proof follows as in λ-S-space every λ-open set is semi open [by Lemma 1.1.9].

Theorem 5.1.9 Every contra λ-continuous function is contra gsΛ-continuous.

Proof: It follows by Definition of contra λ-continuous function and the fact that every λ-closed set is gsΛ closed.

Remark 34 Converse of the above Theorem 5.1.9 need not be true as seen from the following example.
Example 39 Let $X = Y = \{a, b, c, d, e\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{c, d, e\}, \{a, b, c, d\}, \{a, c, d, e\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}, \{a, b, e\}, \{a, b, c, d\}\}$. The identity function $f: (X, \tau) \rightarrow (Y, \sigma)$ is a contra gsΛ-continuous function but not contra λ-continuous functions as $A = \{c\}$ is closed in (Y, σ) but $f^{-1}(A) = \{c\}$ is not λ-open in (X, τ).

Theorem 5.1.10 If a function $f: (X, \tau) \rightarrow (Y, \sigma)$ is contra gsΛ-continuous and (X, τ) is T_1 then f is is contra λ-continuous.

Proof: Let F be a open set in (Y, σ) and a function $f: (X, \tau) \rightarrow (Y, \sigma)$ be a contra gsΛ continuous function where (X, τ) is T_1. As f is a contra gsΛ continuous function $f^{-1}(F)$ is gsΛ-closed in (X, τ) which is λ-closed as (X, τ) is T_1 [by Theorem 2.2.4]. Thus f is a contra λ-continuous function.

Remark 35 The following Examples shows that λ-continuous and contra gsΛ-continuous functions are in general independent.

Example 40 Let $X = Y = \{a, b, c, d, e\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{c, d, e\}, \{a, b, c, d\}, \{a, c, d, e\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}, \{a, b, e\}, \{a, b, c, d\}\}$. The identity function $f: (X, \tau) \rightarrow (Y, \sigma)$ is a contra gsΛ-continuous function but not λ-continuous functions as $A = \{c\}$ is closed in (Y, σ) but $f^{-1}(A) = \{c\}$ is not λ-closed in (X, τ).

Example 41 Let $X = Y = \{a, b, c, d, e\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, e\}, \{a, b, d, e\}, \{a, b, c, d\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}, \{a, c, d\}, \{b, c, d\}, \{c, d, e\}, \{a, b, c, d\}, \{a, c, d, e\}, \{b, c, d, e\}\}$. The identity function $f: (X, \tau) \rightarrow (Y, \sigma)$ is λ-continuous functions but not contra gsΛ-continuous function as $A = \{b, e\}$ is closed in (Y, σ) but $f^{-1}(A) = \{b, e\}$ is not gsΛ- open in (X, τ).
Theorem 5.1.11 If a function $f: (X, \tau) \rightarrow (Y, \sigma)$ is λ continuous and (X, τ) is λ-space then f is contra $gs\Lambda$ continuous.

Proof: Let F be a open set in (Y, σ) and a function $f: (X, \tau) \rightarrow (Y, \sigma)$ be a λ continuous function where (X, τ) is a λ- space. As f is λ continuous, $f^{-1}(F)$ is λ-open in (X, τ) which is open as (X, τ) is a λ- space [Lemma 1.1.9]. Now by Theorem 2.1.5 $f^{-1}(F)$ is $gs\Lambda$-closed in (X, τ). Thus f is a contra $gs\Lambda$ continuous function.

Remark 36 $gs\Lambda$-continuous functions and contra $gs\Lambda$-continuous functions are in general independent as it can be seen from the following examples.

Example 42 Let $X = Y = \{a, b, c, d, e\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, e\}, \{a, d, e\}, \{b, c, e\}, \{b, c, d\}, \{c, d\}\}$, $(Y, \sigma)=\{\emptyset, Y, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{c, d\}\}$. The identity function $f: (X, \tau) \rightarrow (Y, \sigma)$ is $gs\Lambda$-continuous functions but not contra $gs\Lambda$-continuous function if $A=\{a, c, d\}$ is open in (Y, σ) but $f^{-1}(A) = \{a, c, d\}$ is not $gs\Lambda$-closed in (X, τ).

Example 43 Let $X = Y = \{a, b, c, d, e\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}, \{a, b, c, d, e\}\}$, $(Y, \sigma)=\{\emptyset, Y, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{c, d\}\}$. The identity function $f: (X, \tau) \rightarrow (Y, \sigma)$ is contra $gs\Lambda$-continuous function but not $gs\Lambda$-continuous function as $A=\{b, e\}$ is closed in (Y, σ) but $f^{-1}(A) = \{b, e\}$ is not $gs\Lambda$-closed in (X, τ).

Theorem 5.1.12 If a function $f: (X, \tau) \rightarrow (Y, \sigma)$ is λ continuous and (Y, σ) is locally indiscrete, then f is contra $gs\Lambda$ continuous.

Proof: Let F be a open set in (Y, σ). Since (Y, σ) is locally indiscrete, [by Lemma 1.1.12] F is closed in Y. As f is λ continuous $f^{-1}(F)$ is λ-closed in
As every \(\lambda\)-closed set is \(gs\Lambda\)-closed set by Theorem 2.1.2, we have \(f^{-1}(F)\) is \(gs\Lambda\)-closed in \((X,\tau)\). Thus \(f\) is contra \(gs\Lambda\)-continuous.

Theorem 5.1.13 If a function \(f:(X,\tau)\rightarrow(Y,\sigma)\) is \(gs\Lambda\)-continuous and \((Y,\sigma)\) is locally indiscrete, then \(f\) is contra \(gs\Lambda\) continuous.

Proof: Let \(F\) be a open set in \((Y,\sigma)\). Since \((Y,\sigma)\) is a locally indiscrete space, [by Lemma 1.1.12] \(F\) is closed in \(Y\). As \(f\) is a \(gs\Lambda\) continuous function \(f^{-1}(F)\) is \(gs\Lambda\)-closed in \((X,\tau)\). Thus \(f\) is contra \(gs\Lambda\)-continuous.

Theorem 5.1.14 If a function \(f:(X,\tau)\rightarrow(Y,\sigma)\) is contra \(gs\Lambda\)-continuous and \((X,\tau)\) is \(T_1\), then \(f\) is contra \(\lambda\)-continuous.

Proof: The proof is obvious [by Theorem 2.2.4] as in \(T_1\) space every \(gs\Lambda\)-closed set is \(\lambda\)-closed.

Theorem 5.1.15 Any function \(f:(X,\tau)\rightarrow(Y,\sigma)\) is contra \(gs\Lambda\)-continuous function, if \((X,\tau)\) is a \(T_{1/2}\) space.

Proof: The Proof is obvious [by Theorem 2.2.5] as in \(T_{1/2}\) space every subset is \(gs\Lambda\)-closed (\(gs\Lambda\)-open).

Theorem 5.1.16 If a function \(f:(X,\tau)\rightarrow(Y,\sigma)\) is a \(g\) continuous(\(\hat{g}\) continuous and \(gs\) continuous) and \((X,\tau)\) is a \(T_{1/2}\) space(resp. \(T\hat{g}\)space, \(T_b\) space) then \(f\) is contra \(gs\Lambda\)-closed.

Proof: Let \(F\) is a closed set in \((Y,\sigma)\). Since \(f\) is \(g\) continuous (\(\hat{g}\) continuous and \(gs\) continuous), \(f^{-1}(F)\)is \(g\) closed (\(\hat{g}\) closed, \(gs\) closed) in \((X,\tau)\). As \((X,\tau)\) is a \(T_{1/2}\) space (resp. \(T\hat{g}\)space, \(T_b\) space), [by Lemma 1.1.11] we have \(f^{-1}(F)\) is closed in \((X,\tau)\). Hence \(f^{-1}(F)\) is a \(gs\Lambda\)-open in \(Y\) as every closed set is \(gs\Lambda\)-open. Thus \(f\) is a contra \(gs\Lambda\)-continuous map.
Theorem 5.1.17 If a function \(f:(X,\tau) \rightarrow (Y,\sigma) \) is a contra gs\(\Lambda \)-continuous function and irresolute, then \(f \) is contra \(\lambda \)-continuous.

Proof: Let \(V \) be a open set of \(Y \). As every open set is semi open, \(V \) is a semi open set in \(Y \). Since \(f \) is a contra gs\(\Lambda \)-continuous function and irresolute function, \(f^{-1}(V) \) is gs\(\Lambda \)-closed and semi open in \((X,\tau) \). Now by Theorem 2.1.3 \(f^{-1}(V) \) is \(\lambda \)-closed. Thus \(f \) is contra \(\lambda \)-continuous function.

Theorem 5.1.18 If a function \(f:(X,\tau) \rightarrow (Y,\sigma) \) is a contra gs\(\Lambda \)-continuous function and semi continuous function then \(f \) is contra \(\lambda \)-continuous function.

Proof: It is similar to the above proof and follows by Lemma 2.1.3.

Theorem 5.1.19 If a function \(f:(X,\tau) \rightarrow (Y,\sigma) \) is a contra semi continuous function and \((X,\tau) \) is globally disconnected then \(f \) is contra gs\(\Lambda \)-continuous function.

Proof: Let \(V \) be a closed set of \(Y \). Since \(f \) is a contra semi continuous function, \(f^{-1}(V) \) is semi open in \((X,\tau) \). Now since \((X,\tau) \) is globally disconnected by Lemma 2.1.12 \(f^{-1}(V) \) is open in \((X,\tau) \), which is gs\(\Lambda \)-open[by Theorem 2.3.4]. Thus \(f \) is a contra gs\(\Lambda \)-continuous function.

Theorem 5.1.20 If a function \(f:(X,\tau) \rightarrow (Y,\sigma) \) is a semi continuous function and \((X,\tau) \) is globally disconnected then \(f \) is contra gs\(\Lambda \)-continuous.

Proof: Let \(V \) be a open set of \(Y \). Since \(f \) is a semi continuous function, \(f^{-1}(V) \) is semi open in \((X,\tau) \). Now since \((X,\tau) \) is globally disconnected \(f^{-1}(V) \) is open in \((X,\tau) \), which is gs\(\Lambda \)-closed [by Theorem 2.1.5]. Thus \(f \) is contra gs\(\Lambda \)-continuous.

Theorem 5.1.21 If a function \(f:(X,\tau) \rightarrow (Y,\sigma) \) is irresolute and \((X,\tau) \) is globally disconnected then \(f \) is contra gs\(\Lambda \)-continuous.

Proof: It follows from the definitions.
Theorem 5.1.22 If a function $f:(X,\tau)\rightarrow(Y,\sigma)$ is contra $gs\Lambda$-continuous and Y is regular then f is $gs\Lambda$-continuous.

\textbf{Proof:} Let x be an arbitrary point of X and N an open set of Y containing $f(x)$. Since Y is regular, there exist an open set U in Y containing $f(x)$ such that $\text{cl}(U) \subseteq N$. Since f is contra $gs\Lambda$-continuous function by Theorem [5.1.4] there exist a $gs\Lambda$- open set W of X with $x \in W$ such that $f(W) \subseteq \text{Cl}(U)$. Then $f(W) \subseteq N$. Hence by Theorem 4.1.16, f is $gs\Lambda$-continuous.

Remark 37 Recall that in a submaximal space [53] every preopen set is open. As every open set is $gs\Lambda$- open and $gs\Lambda$-closed, it is clear to observe that in a submaximal space every preopen set is $gs\Lambda$- open and $gs\Lambda$-closed

Theorem 5.1.23 If a function $f:(X,\tau)\rightarrow(Y,\sigma)$ is contra pre continuous and X is submaximal then f is both $gs\Lambda$-continuous and contra $gs\Lambda$-continuous.

\textbf{Proof:} It follows from remark 37.

Similarly we can prove the following Theorem

Theorem 5.1.24 If a function $f:(X,\tau)\rightarrow(Y,\sigma)$ is pre continuous and X is submaximal then f is both $gs\Lambda$-continuous and contra $gs\Lambda$-continuous.

Theorem 5.1.25 If a function $f:(X,\tau)\rightarrow(Y,\sigma)$ is a contra λ-continuous function and A is a open subset of X, then the restriction $f_A:A \rightarrow Y$ is also contra $gs\Lambda$-continuous.

\textbf{Proof:} Let V be a open set of Y and A be a open subset of X. As every open set is λ-closed, A is λ-closed in X and since f is contra λ-continuous $f^{-1}(V)$ is λ-closed in X. Hence we have $f^{-1}(V) \cap A$ is λ-closed in X, which is also $gs\Lambda$-closed in (X,τ). Since $f^{-1}(V) \cap A \subseteq A \subseteq X$ where A is a open subset of X, by Theorem 2.2.23 $f^{-1}(V) \cap A = (f_A^{-1}(V))$ is $gs\Lambda$-closed in A. Thus the restriction $f_A:A \rightarrow Y$ is also contra $gs\Lambda$-continuous.
Definition 5.1.26 A topological space X is said to be

1. $gs\Lambda\text{-}T_0$ if for each $x, y \in X$ such that $x \neq y$ there exist a $gs\Lambda$-open set U of X containing x but not y or a $gs\Lambda$-open set V of X containing y but not x.

2. $gs\Lambda\text{-}T_1$ if for each $x, y \in X$ such that $x \neq y$ there exist a $gs\Lambda$-open set U of X containing x but not y and a $gs\Lambda$-open set V of X containing y but not x.

3. $gs\Lambda\text{-}T_2$ if for each $x, y \in X$ such that $x \neq y$ there exist a $gs\Lambda$-open set U of X containing x and a $gs\Lambda$-open set V of X containing y such that $U \cap V = \emptyset$.

Definition 5.1.27 A topological space X is said to be

1. $gs\Lambda\text{-}Urysohn$ if for each $x, y \in X$ such that $x \neq y$ there exist a $gs\Lambda$-open set U of X containing x and a $gs\Lambda$-open set V of X containing y such that $gs\Lambda Cl(U) \cap gs\Lambda Cl(V) = \emptyset$.

2. $gs\Lambda\text{-}normal$ if for each pair of non empty disjoint closed sets A and B of X there exist disjoint $gs\Lambda$-open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Theorem 5.1.28 If X is a topological space and for each pair of distinct points x_1 and $x_2 \in X$, there exist a map f of X into a Urysohn topological space Y such that $f(x_1) \neq f(x_2)$ and f is contra $gs\Lambda$-continuous at x_1 and x_2, then X is $gs\Lambda\text{-}T_2$.

Proof: Let x_1 and $x_2 \in X$ such that $x_1 \neq x_2$. Then by hypothesis there is a Urysohn space Y and a function $f: X \rightarrow Y$, such that $f(x_1) \neq f(x_2)$ and f is contra $gs\Lambda$-continuous at x_1 and x_2. Let $y_i = f(x_i), i=1,2$. Then $y_1 \neq y_2$. Since Y is Urysohn, there exist open neighbourhoods U_{y_1} and U_{y_2} of y_1 and y_2 respectively, in Y such that $Cl(U_{y_1}) \cap Cl(U_{y_2}) = \emptyset$. Since f is contra $gs\Lambda$-continuous at x_i, there exist a $gs\Lambda$-open neighbourhood W_{x_i} of x_i in X such that $f(W_{x_i}) \subseteq Cl(U_{y_i})$ for $i=1,2$. Hence we get $W_{x_1} \cap W_{x_2} = \emptyset$ since $Cl(U_{y_1}) \cap Cl(U_{y_2}) = \emptyset$. Hence X is $gs\Lambda Cl\text{-}T_2$.

65
Corollary 5.1.29 If f is a contra $gs\Lambda$-continuous injection of a topological space X into a Urysohn space Y, then X is $gs\Lambda$-T_2.

Theorem 5.1.30 If f is a contra $gs\Lambda$-continuous injection of a topological space X into an Ultra Hausdroff space Y, then X is $gs\Lambda$-T_2.

Proof: Let x_1 and $x_2 \in X$ be a pair of distinct points. Since f is injective and Y is Ultra Hausdroff, we get $f(x_1) \neq f(x_2)$ and there exist clopen sets V_1, V_2 in Y, such that $f(x_1) \in V_1, f(x_2) \in V_2$ and $V_1 \cap V_2 = \emptyset$. Then $x_i \in f^{-1}(V_i)$ for $i=1,2$ and $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$ where $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are $gs\Lambda$-open in X. Hence by the above Theorem X is $gs\Lambda$-T_2.

Definition 5.1.31 A topological space X is said to be

1. $gs\Lambda$-Hausdroff if for each pair of distinct points x and y in X there exist disjoint $gs\Lambda$-open subsets U and V of X containing x and y respectively, such that $U \cap V = \emptyset$.

2. $gs\Lambda$-ultra Hausdroff if for each pair of distinct points x and y in X there exist disjoint $gs\Lambda$-clopen subsets U and V of X containing x and y respectively, such that $U \cap V = \emptyset$.

Theorem 5.1.32 If f is a contra $gs\Lambda$-continuous injection of a topological space X into an Urysohn space Y, then X is $gs\Lambda$-Hausdroff.

Proof: Let x_1 and $x_2 \in X$ be a pair of distinct points. Suppose $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since f is injective and Y is Urysohn, we get $f(x_1) \neq f(x_2)$ and there exist open sets V_1 and V_2 in Y containing $f(x_1)$ and $f(x_2)$ respectively, such that $Cl(V_1) \cap Cl(V_2) = \emptyset$. Since f is contra $gs\Lambda$-continuous there exist $gs\Lambda$-open sets U_1 and U_2 in X containing x_1 and x_2 respectively, such that $f(U_1) \subset Cl(V_1)$ and $f(U_2) \subset Cl(V_2)$. Therefore we have $U_1 \cap U_2 = \emptyset$. Hence X is $gs\Lambda$-Hausdroff.
Theorem 5.1.33 If f is a contra $g_{s\Lambda}$-continuous injection of a topological space X into an Ultra Hausdroff space Y, then X is $g_{s\Lambda}$-Hausdroff.

Proof: Let x_1 and $x_2 \in X$ be a pair of distinct points. Suppose $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since f is injective and Y is Ultra Hausdroff, we get $f(x_1) \neq f(x_2)$ and there exist clopen sets V_1 and V_2 in Y containing $f(x_1)$ and $f(x_2)$ respectively, such that $V_1 \cap V_2 = \emptyset$. Since f is contra $g_{s\Lambda}$-continuous $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are $g_{s\Lambda}$-open sets containing x_1 and x_2 respectively, such that $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$. Hence X is $g_{s\Lambda}$-Hausdroff.

Let us define that the product space $X = X_1 \times X_2 \times X_3 \times \ldots \times X_n$ has the property P_L if U_i is a $g_{s\Lambda}$-open set in a topological set X_i for $i=1,2,\ldots,n$, then $U_1 \times U_2 \times U_3 \times \ldots \times U_n$ is also $g_{s\Lambda}$-open set in the product space $X = X_1 \times X_2 \times X_3 \times \ldots \times X_n$.

Theorem 5.1.34 Let $f_1 : X_1 \rightarrow Y$ and $f_2 : X_2 \rightarrow Y$ be two functions, where

1. $X=X_1 \times X_2$ have the property P_L

2. Y is a Urysohn space

3. f_1 and f_2 are contra $g_{s\Lambda}$-continuous.

Then $\{(x_1,x_2) : f_1(x_1) = f_2(x_2)\}$ is $g_{s\Lambda}$-closed in the product space $X = X_1 \times X_2$.

Proof: Let A denote the set $\{(x_1,x_2) : f_1(x_1) = f_2(x_2)\}$. Let us first show that $(X_1 \times X_2) \setminus A$ is $g_{s\Lambda}$-open. Let $(x_1,x_2) \notin A$. Then $f_1(x_1) \neq f_2(x_2)$. Since Y is Urysohn space there exists open sets V_1 and V_2 of $f_1(x_1)$ and $f_2(x_2)$ respectively such that $\text{Cl}(V_1) \cap \text{Cl}(V_2) = \emptyset$. Since $f_i, i=1,2$ is contra $g_{s\Lambda}$-continuous, $f_i^{-1}(\text{Cl}(V_i)), i=1,2$ is a $g_{s\Lambda}$-open set containing x_i in $X_i, i=1,2$. Hence by (1) $f_1^{-1}(\text{Cl}(V_1)) \times f_2^{-1}(\text{Cl}(V_2))$ is $g_{s\Lambda}$-open. Further more $(x_1,x_2) \notin f_1^{-1}(\text{Cl}(V_1)) \times f_2^{-1}(\text{Cl}(V_2)) \subset (X_1 \times X_2) \setminus A$. It follows that $(X_1 \times X_2) \setminus A$ is $g_{s\Lambda}$-open. Thus A is $g_{s\Lambda}$-closed in the product space $X_1 \times X_2$.

67
Theorem 5.1.35 Assume that the product space $X \times X$ has the property P_L. If $f:X \to Y$ is a contra $gs\Lambda$-continuous and Y is a Urysohn space, then \{(x_1, x_2): f(x_1) = f(x_2)\} is $gs\Lambda$-closed in the product space $X \times X$.

Proof: It follows from Theorem 5.1.34.

Theorem 5.1.36 If $(X, \tau) \to (Y, \sigma)$ is a closed contra $gs\Lambda$-continuous injection and Y is ultra normal, then X is $gs\Lambda$- normal.

Proof: Let V_1 and V_2 be non empty disjoint closed subsets of X. Since f is closed and injective, $f(V_1)$ and $f(V_2)$ are non empty disjoint closed subsets of Y. Since Y is Ultra normal, $f(V_1)$ and $f(V_2)$ can be separated by disjoint clopen sets W_1 and W_2 respectively. Hence $V_i \subseteq f^{-1}(W_i), i=1,2$ and since f is contra $gs\Lambda$-continuous $f^{-1}(W_i), i=1,2$ are $gs\Lambda$- open sets of X and $f^{-1}(W_1) \cap f^{-1}(W_2) = \emptyset$. Thus X is $gs\Lambda$- normal.

5.2 On composition of contra $gs\Lambda$ continuous functions

Theorem 5.2.1 The composition of contra continuous functions is contra $gs\Lambda$-continuous.

Proof: Let $f:(X, \tau) \to (Y, \sigma)$ and $g:(Y, \sigma) \to (Z, \xi)$ are contra continuous functions. Let F be a open set of (Z, ξ). Then $g^{-1}(F)$ is a closed set in (Y, σ) as $g:(Y, \sigma) \to (Z, \xi)$ is a contra continuous function and $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$ is a open set in (X, τ) as $f:(X, \tau) \to (Y, \sigma)$ is a contra continuous function. Since every open set is $gs\Lambda$-closed, $(gof)^{-1}(F)$ is a $gs\Lambda$-closed set in (X, τ). Thus $gof:(X, \tau) \to (Z, \xi)$ is a contra $gs\Lambda$-continuous function.

Theorem 5.2.2 The composition of continuous functions is contra $gs\Lambda$-continuous.

Proof: It follows from definitions.
Remark 38 But composition of contra $gs\Lambda$-continuous functions need not be contra $gs\Lambda$-continuous. This is verified in the following example.

Example 44 Let $X = Y = Z = \{a,b,c,d,e\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a,b\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}, \{a,b,c,d\}\}$ and $\sigma = \{\emptyset, \{a\}, \{b\}, \{a,b\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}, \{a,b,c,d\}\}$ and $\xi = \{\emptyset, \{a\}, \{b\}, \{a,b\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}, \{a,b,c,d\}\}$. The identity function $f:(X,\tau)\rightarrow(Y,\sigma)$ and the identity function $g:(Y,\sigma)\rightarrow(Z,\xi)$ are contra $gs\Lambda$-continuous functions but $gof:(X,\tau)\rightarrow(Z,\xi)$ is not contra $gs\Lambda$-continuous function for $A=\{b,e\}$ is open in (Z,ξ) but $f^{-1}(A)=\{b,e\}$. $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$ is a closed set in (X,τ) as $f:(X,\tau)\rightarrow(Y,\sigma)$ is a contra continuous function. Since every closed set is $gs\Lambda$-closed, $(gof)^{-1}(F)$ is a $gs\Lambda$-closed set in (X,τ). Thus $gof:(X,\tau)\rightarrow(Z,\xi)$ is a contra $gs\Lambda$-continuous function.

Theorem 5.2.3 If $f:(X,\tau)\rightarrow(Y,\sigma)$ is a continuous function and $g:(Y,\sigma)\rightarrow(Z,\xi)$ is a contra continuous function, then $gof:(X,\tau)\rightarrow(Z,\xi)$ is a contra $gs\Lambda$-continuous function.

Proof: Let F be a open set of (Z,ξ). Then $g^{-1}(F)$ is a closed set in (Y,σ) as $g:(Y,\sigma)\rightarrow(Z,\xi)$ is a contra continuous function and $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$ is a closed set in (X,τ) as $f:(X,\tau)\rightarrow(Y,\sigma)$ is a continuous function. Since every closed set is $gs\Lambda$-closed, $(gof)^{-1}(F)$ is a $gs\Lambda$-closed set in (X,τ). Thus $gof:(X,\tau)\rightarrow(Z,\xi)$ is a contra $gs\Lambda$-continuous function.

Theorem 5.2.4 If $f:(X,\tau)\rightarrow(Y,\sigma)$is contra continuous and $g:(Y,\sigma)\rightarrow(Z,\xi)$ is continuous, then $gof:(X,\tau)\rightarrow(Z,\xi)$is contra $gs\Lambda$-continuous.

Proof: Let F be a open set of (Z,ξ). Then $g^{-1}(F)$ is a open set in (Y,σ) as $g:(Y,\sigma)\rightarrow(Z,\xi)$ is a continuous function and $f^{-1}(g^{-1}(F)) = (gof)^{-1}(F)$ is a closed set in (X,τ) as $f:(X,\tau)\rightarrow(Y,\sigma)$ is a contra continuous function. Since every closed set is $gs\Lambda$-closed, $(gof)^{-1}(F)$ is a $gs\Lambda$-closed set in (X,τ). Thus $gof:(X,\tau)\rightarrow(Z,\xi)$ is a contra $gs\Lambda$-continuous function.
Theorem 5.2.5 If \(f: (X, \tau) \to (Y, \sigma) \) is gs\(\Lambda \)-continuous and \(g: (Y, \sigma) \to (Z, \xi) \) is contra continuous, then \(gof: (X, \tau) \to (Z, \xi) \) is contra gs\(\Lambda \)-continuous.

Proof: Let \(F \) be a open set of \((Z, \xi)\). Then \(g^{-1}(F) \) is a closed set in \((Y, \sigma)\) and \(f^{-1}(g^{-1}(F)) = (gof)^{-1}(F) \) is a gs\(\Lambda \)-closed set in \((X, \tau)\) as \(f: (X, \tau) \to (Y, \sigma) \) is a gs\(\Lambda \)-continuous function. Thus \(gof: (X, \tau) \to (Z, \xi) \) is a contra gs\(\Lambda \)-continuous function.

Theorem 5.2.6 If \(f: (X, \tau) \to (Y, \sigma) \) is contra gs\(\Lambda \)-continuous and \(g: (Y, \sigma) \to (Z, \xi) \) is continuous, then \(gof: (X, \tau) \to (Z, \xi) \) is contra gs\(\Lambda \)-continuous.

Proof: Let \(F \) be a open set of \((Z, \xi)\). Then \(g^{-1}(F) \) is a open set in \((Y, \sigma)\) as \(g: (Y, \sigma) \to (Z, \xi) \) is a continuous function and \(f^{-1}(g^{-1}(F)) = (gof)^{-1}(F) \) is a gs\(\Lambda \)-closed set in \((X, \tau)\) as \(f: (X, \tau) \to (Y, \sigma) \) is a contra gs\(\Lambda \)-continuous function. Thus \(gof: (X, \tau) \to (Z, \xi) \) is a contra gs\(\Lambda \)-continuous function.

Theorem 5.2.7 If \(f: (X, \tau) \to (Y, \sigma) \) is contra \(\lambda \)-continuous and \(g: (Y, \sigma) \to (Z, \xi) \) is continuous, then \(gof: (X, \tau) \to (Z, \xi) \) is contra gs\(\Lambda \)-continuous.

Proof: Let \(F \) be a open set of \((Z, \xi)\). Then \(g^{-1}(F) \) is a open set in \((Y, \sigma)\) as \(g: (Y, \sigma) \to (Z, \xi) \) is a continuous function and \(f^{-1}(g^{-1}(F)) = (gof)^{-1}(F) \) is a \(\lambda \)-closed set in \((X, \tau)\) as \(f: (X, \tau) \to (Y, \sigma) \) is a contra \(\lambda \)-continuous function. Since every \(\lambda \)-closed set is gs\(\Lambda \)-closed by preposition [2.5], \((gof)^{-1}(F) \) is a gs\(\Lambda \)-closed set in \((X, \tau)\). Thus \(gof: (X, \tau) \to (Z, \xi) \) is a contra gs\(\Lambda \)-continuous function.

Theorem 5.2.8 If \(f: (X, \tau) \to (Y, \sigma) \) is \(\lambda \)- irresolute and \(g: (Y, \sigma) \to (Z, \xi) \) is contra \(\lambda \)-continuous, then \(gof: (X, \tau) \to (Z, \xi) \) is contra gs\(\Lambda \)-continuous.

Proof: Let \(F \) be a open set of \((Z, \xi)\), \(f: (X, \tau) \to (Y, \sigma) \) is a \(\lambda \)- irresolute function and \(g: (Y, \sigma) \to (Z, \xi) \) is a Contra \(\lambda \)-continuous function. Then \(g^{-1}(F) \) is a \(\lambda \)-closed set in \((Y, \sigma)\) as \(g: (Y, \sigma) \to (Z, \xi) \) is a Contra \(\lambda \)-continuous function and \(f^{-1}(g^{-1}(F)) = (gof)^{-1}(F) \) is a \(\lambda \)-closed set in \((X, \tau)\) as \(f: (X, \tau) \to (Y, \sigma) \) is a
\(\lambda\)- irresolute function. Since every \(\lambda\)-closed set is \(gs\Lambda\)-closed by, \((gof)^{-1}(F)\) is a \(gs\Lambda\)-closed set in \((X,\tau)\). Thus \(gof:(X,\tau)\rightarrow (Z,\xi)\) is a contra \(gs\Lambda\)-continuous function.

Theorem 5.2.9 The composition of \(\lambda\)- irresolute functions is contra \(gs\Lambda\)-continuous.

Proof: As every \(\lambda\)-closed set is \(gs\Lambda\)-closed by the proof is clear.

Theorem 5.2.10

1. Let \(f:(X,\tau)\rightarrow (Y,\sigma)\) be a \(gs\Lambda\)-continuous function and \(g:(Y,\sigma)\rightarrow (Z,\xi)\) is a continuous function, then \(gof:(X,\tau)\rightarrow (Z,\xi)\) is a \(\lambda\)-continuous function if \((X,\tau)\) is a \(T_1\) space.

2. Let \(f:(X,\tau)\rightarrow (Y,\sigma)\) be a precontinuous function and \(g:(Y,\sigma)\rightarrow (Z,\xi)\) is a continuous function, then \(gof:(X,\tau)\rightarrow (Z,\xi)\) is a contra \(gs\Lambda\)-continuous function if \((X,\tau)\) is a submaximal space.

3. Let \(f:(X,\tau)\rightarrow (Y,\sigma)\) be a contra pre continuous function and \(g:(Y,\sigma)\rightarrow (Z,\xi)\) is a continuous function, then \(gof:(X,\tau)\rightarrow (Z,\xi)\) is a contra \(gs\Lambda\)-continuous function if \((X,\tau)\) is a submaximal space.

4. Let \(f:(X,\tau)\rightarrow (Y,\sigma)\) be a contra pre continuous function and \(g:(Y,\sigma)\rightarrow (Z,\xi)\) is a contra continuous function, then \(gof:(X,\tau)\rightarrow (Z,\xi)\) is a contra \(gs\Lambda\)-continuous function if \((X,\tau)\) is a globally disconnected space.

5. Let \(f:(X,\tau)\rightarrow (Y,\sigma)\) be a semi continuous function and \(g:(Y,\sigma)\rightarrow (Z,\xi)\) is a continuous function, then \(gof:(X,\tau)\rightarrow (Z,\xi)\) is a contra \(gs\Lambda\)-continuous function if \((X,\tau)\) is a globally disconnected space.

6. Let \(f:(X,\tau)\rightarrow (Y,\sigma)\) be a contra semi continuous function and \(g:(Y,\sigma)\rightarrow (Z,\xi)\) is a continuous function, then \(gof:(X,\tau)\rightarrow (Z,\xi)\) is a contra \(gs\Lambda\)-continuous function if \((X,\tau)\) is a globally disconnected space.

7. Let \(f:(X,\tau)\rightarrow (Y,\sigma)\) be a contra semi continuous function and \(g:(Y,\sigma)\rightarrow (Z,\xi)\) is a contra continuous function, then \(gof:(X,\tau)\rightarrow (Z,\xi)\) is a contra \(gs\Lambda\)-continuous function if \((X,\tau)\) is a globally disconnected space.
Proof:

1. The proof is clear as in a T_1 space every $gs\Lambda$-closed set is λ-closed.

2. Let F be open in (Z, ξ). Then $g^{-1}(F)$ is open in (Y, σ) as g is a continuous function and $f^{-1}(g^{-1}(F))=(gof)^{-1}(F)$ is a pre open set in (X, τ) as f is a pre continuous function. $(gof)^{-1}(F)$ is a closed set in (X, τ) as (X, τ) is a submaximal space. Since every closed set is $gs\Lambda$-open, $(gof)^{-1}(F)$ is a $gs\Lambda$-open set in (X, τ). Thus $gof:(X, \tau) \rightarrow (Z, \xi)$ is contra $gs\Lambda$-continuous.

3. Let F be closed in (Z, ξ). Then $g^{-1}(F)$ is closed in (Y, σ) and $f^{-1}(g^{-1}(F))=(gof)^{-1}(F)$ is preopen in (X, τ) as f is contra precontinuous. $(gof)^{-1}(F)$ is a open set in (X, τ) as (X, τ) is a submaximal space. Since every open set is $gs\Lambda$-closed, $(gof)^{-1}(F)$ is a $gs\Lambda$-closed set in (X, τ). Thus $gof:(X, \tau) \rightarrow (Z, \xi)$ is contra $gs\Lambda$-continuous.

4. Let F be open in (Z, ξ). Then $g^{-1}(F)$ is closed in (Y, σ) as g is contra continuous and $f^{-1}(g^{-1}(F))=(gof)^{-1}(F)$ is preopen in (X, τ) as f is contra precontinuous. $(gof)^{-1}(F)$ is a open set in (X, τ) as (X, τ) is a submaximal space. Since every open set is $gs\Lambda$-closed, $(gof)^{-1}(F)$ is $gs\Lambda$-closed in (X, τ). Thus $gof:(X, \tau) \rightarrow (Z, \xi)$ is contra $gs\Lambda$-continuous.

(5),(6),(7) can be proved in similar lines as in a globally disconnected space every semi open set is open.

Theorem 5.2.11 Let $f:(X, \tau) \rightarrow (Y, \sigma)$ and $g:(Y, \sigma) \rightarrow (Z, \xi)$ be bijective. Then the following are true:

1. If $gof:(X, \tau) \rightarrow (Z, \xi)$ is contra continuous and $f:(X, \tau) \rightarrow (Y, \sigma)$ is $gs\Lambda$-closed then $g:(Y, \sigma) \rightarrow (Z, \xi)$ is contra $gs\Lambda$-continuous.
2. If $g: (X, \tau) \rightarrow (Z, \xi)$ is contra λ-continuous and $f: (X, \tau) \rightarrow (Y, \sigma)$ is λ-closed then $g: (Y, \sigma) \rightarrow (Z, \xi)$ is contra $g s \Lambda$-continuous.

3. If $g: (X, \tau) \rightarrow (Z, \xi)$ is λ-irresolute and $f: (X, \tau) \rightarrow (Y, \sigma)$ is λ-closed then $g: (Y, \sigma) \rightarrow (Z, \xi)$ is contra $g s \Lambda$-continuous.

4. If $g: (X, \tau) \rightarrow (Z, \xi)$ is contra continuous function and $f: (X, \tau) \rightarrow (Y, \sigma)$ is λ-closed then $g: (Y, \sigma) \rightarrow (Z, \xi)$ is contra $g s \Lambda$-continuous.

5. If $g: (X, \tau) \rightarrow (Z, \xi)$ is contra $g s \Lambda$-continuous and $f: (X, \tau) \rightarrow (Y, \sigma)$ is irresolute and λ-closed then $g: (Y, \sigma) \rightarrow (Z, \xi)$ is contra $g s \Lambda$-continuous.

6. If $g: (X, \tau) \rightarrow (Z, \xi)$ is contra $g s \Lambda$-continuous and $f: (X, \tau) \rightarrow (Y, \sigma)$ is $M. g s \Lambda$-closed then $g: (Y, \sigma) \rightarrow (Z, \xi)$ is contra $g s \Lambda$-continuous.

Proof:

1. Let F be a open set in (Z, ξ). Since $g o f$ is a contra continuous function $(g o f)^{-1}(F) = f^{-1}(g^{-1}(F))$ is closed in (X, τ). Now since f is a $g s \Lambda$-closed map $f(f^{-1}(g^{-1}(F))) = g^{-1}(F)$ is $g s \Lambda$-closed set in (Y, σ). Thus $g: (Y, \sigma) \rightarrow (Z, \xi)$ is a contra $g s \Lambda$-continuous function.

2. Let F be a open set in (Z, ξ). Since $g o f$ is a contra λ-continuous function $(g o f)^{-1}(F) = f^{-1}(g^{-1}(F))$ is λ-closed in (X, τ). Now since f is a λ-closed map $f(f^{-1}(g^{-1}(F))) = g^{-1}(F)$ is λ-closed which is also $g s \Lambda$-closed set in (Y, σ). Thus $g: (Y, \sigma) \rightarrow (Z, \xi)$ is a contra $g s \Lambda$-continuous function.

3. Let F be a open set in (Z, ξ) which is also λ-closed in Z. Since $g o f$ is a λ-irresolute function $(g o f)^{-1}(F) = f^{-1}(g^{-1}(F))$ is λ-closed in (X, τ). Now since f is a λ-closed map $f(f^{-1}(g^{-1}(F))) = g^{-1}(F)$ is λ-closed which is also $g s \Lambda$-closed set in (Y, σ). Thus $g: (Y, \sigma) \rightarrow (Z, \xi)$ is a contra $g s \Lambda$-continuous function.
4. Let F be an open set in (Z, ξ). Since g is a contra continuous function $(gof)^{-1}(F) = f^{-1}(g^{-1}(F))$ is closed in (X, τ), which is also λ-closed in X. Now since f is a λ-closed map $ff^{-1}(g^{-1}(F)) = g^{-1}(F)$ is λ-closed which is also $\text{gs}\Lambda$-closed set in (Y, σ). Thus $g: (Y, \sigma) \rightarrow (Z, \xi)$ is a $\text{gs}\Lambda$-continuous function.

5. Let F be an open set in (Z, ξ). Since g is a contra $\text{gs}\Lambda$-continuous function $(gof)^{-1}(F) = f^{-1}(g^{-1}(F))$ is $\text{gs}\Lambda$ closed in (X, τ). Now we have $ff^{-1}(g^{-1}(F)) = g^{-1}(F)$ is $\text{gs}\Lambda$-closed set in (Y, σ). Thus $g: (Y, \sigma) \rightarrow (Z, \xi)$ is a contra $\text{gs}\Lambda$-continuous function.

6. Let F be an open set in (Z, ξ). Since g is a $\text{gs}\Lambda$-continuous function $(gof)^{-1}(F) = f^{-1}(g^{-1}(F))$ is $\text{gs}\Lambda$-closed in (X, τ). Now since f is a $\text{M. gs}\Lambda$-closed map $ff^{-1}(g^{-1}(F)) = g^{-1}(F)$ is $\text{gs}\Lambda$-closed. Thus $g: (Y, \sigma) \rightarrow (Z, \xi)$ is a contra $\text{gs}\Lambda$-continuous function.

Theorem 5.2.12 Let $\{X_i : i \in \Delta\}$ be any family of topological spaces. If $f: X \rightarrow \prod X_i$ is a contra $\text{gs}\Lambda$-continuous function, then $Pr_i of: X \rightarrow \prod X_i$ is a contra $\text{gs}\Lambda$-continuous function for each $i \in \Delta$ where Pr_i is the projection of $\prod X_i$ onto X_i.

Proof: We shall consider a fixed $i \in \Delta$. Suppose U_i is an arbitrary open set in X_i. Since Pr_i is continuous function, $Pr_i^{-1}(U_i)$ is open in $\prod X_i$. Since f is contra $\text{gs}\Lambda$-continuous function, we have $f^{-1}(Pr_i^{-1}U_i) = (Pr_i o f)_i^{-1}$ is $\text{gs}\Lambda$-closed in X. Therefore $Pr_i of$ is contra $\text{gs}\Lambda$-continuous function.

Theorem 5.2.13 Let $\{X_i : i \in \Delta\}$ be any family of topological spaces. If $f: X \rightarrow \prod X_i$ is a contra continuous(continuous) function, then $Pr_i of: X \rightarrow \prod X_i$ is a contra $\text{gs}\Lambda$-continuous function for each $i \in \Delta$ where Pr_i is the projection of $\prod X_i$ onto X_i.

Proof: We shall consider a fixed $i \in \Delta$. Suppose U_i is an arbitrary open set
in X_i. Then $Pr_i^{-1}(U_i)$ is open in $\prod X_i$. Since f is contra continuous (continuous) function, we have $f^{-1}(Pr_i^{-1}(U_i))= (Pr_i of)^{-1}(U_i)$ is closed (open) in X, which is $gs\Lambda$-closed in X. Therefore $Pr_i of$ is contra $gs\Lambda$-continuous function.

5.3 Contra $gs\Lambda$-closed graph

Definition 5.3.1 If $f:(X,\tau) \longrightarrow (Y,\sigma)$ is any function, then the subset $G(f)= \{(x,f(x)) \mid x \in X\}$ of the product space $(X \times Y, \tau \times \sigma)$ is called the graph of f.

Definition 5.3.2 A function $f:(X,\tau) \longrightarrow (Y,\sigma)$ is said to have a strongly $gs\Lambda$-closed graph if for each $(x,y) \in (X \times Y) \setminus G(f)$, there exist $U \in gs\Lambda O(X,x)$ and $V \in gs\Lambda O(Y,y)$ such that $f(U) \cap gs\Lambda Cl(V) = \emptyset$.

Definition 5.3.3 A graph $G(f)$ of a function $f:X \longrightarrow Y$ is said to be contra $gs\Lambda$-closed graph if for each $(x,y) \in (X \times Y) \setminus G(f)$, there exist $gs\Lambda$-open set U in X containing x and a closed set V in Y containing y such that $f(U) \cap V = \emptyset$.

Theorem 5.3.4 If $f:X \longrightarrow Y$ is contra $gs\Lambda$-continuous injective and Y is Urysohn, then $G(f)$ is contra $gs\Lambda$-closed in $X \times Y$.

Proof: Let $(x,y) \in (X \times Y) \setminus G(f)$, then $f(x) \neq y$ as Y is Urysohn and there exist open sets V, W such that $f(x) \in V, y \in W$ and $Cl(V) \cap Cl(W) = \emptyset$. Since f is contra $gs\Lambda$-continuous there exist $gs\Lambda$-open set U in X, such that $f(U) \subseteq Cl(V)$. Therefore, we obtain $f(U) \cap Cl(W) = \emptyset$. This shows that $G(f)$ is contra $gs\Lambda$-closed in $X \times Y$.

75
Theorem 5.3.5 Let \(f: X \rightarrow Y \) have a contra gs\(\Lambda\)-graph. If \(f \) is injective, then \(X \) is gs\(\Lambda\)-T\(_1\).

Proof: Let \(x \) and \(y \) be any two distinct points in \(X \). Then we have \((x, f(y)) \in (X \times Y) \setminus G(f)\). Then there exist a gs\(\Lambda\)-open set \(U \) in \(X \) containing \(x \) and a closed set \(F \) in \(Y \) containing \(f(y) \) such that \(f(U) \cap F = \emptyset \). Hence \(U \cap f^{-1}(F) = \emptyset \). Therefore, we have \(y \notin U \). This implies that \(X \) is gs\(\Lambda\)-T\(_1\).

Theorem 5.3.6 Let \(f: X \rightarrow Y \) be a function and \(g: X \rightarrow X \times Y \) the graph function with \(g(x) = (x, f(x)) \) for every \(x \in X \). Then \(f \) is contra gs\(\Lambda\)-continuous if and only if \(g \) is contra gs\(\Lambda\)-continuous function. Assume that \(X \) is a gs\(\Lambda\)-space.

Proof: Let us assume that \(f \) is contra gs\(\Lambda\)-continuous function. Let \(x \in X \) and let \(W \) be a closed subset of \(X \times Y \) containing \(g(x) \). Then \(W \cap (\{ x \} \times Y) \) is closed in \(\{ x \} \times Y \) containing \(g(x) \). Also \(\{ x \} \times Y \) is homogeneous to \(Y \). Hence \(\{ y \in Y : (x, y) \in W \} \) is a closed subset of \(Y \). Since \(f \) is contra gs\(\Lambda\)-continuous \(f^{-1}(y) \) where \((x, y) \in W \) is gs\(\Lambda\)-open subset of \(X \). Further we have \(x \in \cup \{ f^{-1}(y) \text{ where } (x, y) \in W \} \subseteq g^{-1}(W) \). Hence \(g^{-1}(W) \) is gs\(\Lambda\)-open. Then \(g \) is contra gs\(\Lambda\)-continuous.

Conversely, let us assume that \(f \) is contra gs\(\Lambda\)-continuous function and let \(F \) be a closed subset of \(Y \). Then \(X \times F \) is a closed subset of \(X \times Y \). Since \(g \) is contra gs\(\Lambda\)-continuous, \(g^{-1}(X \times F) \) is a gs\(\Lambda\)-open subset of \(X \). Also \(g^{-1}(X \times F) = f^{-1}(F) \). Hence \(f \) is contra gs\(\Lambda\)-continuous.