CHAPTER I

CONVERGENCE THEOREMS

1. Approximation of unbounded functions in \(C(0, \infty) \) by the Bernstein-type rational operators \(L_n \)

The Bernstein-type rational operators \(L_n \) (\(n \in \mathbb{N} \)) are defined on \(C(0, \infty) \), the class of all continuous functions on \([0, \infty) \), by

\[
L_n(f; x) = (1 + x)^{-n} \sum_{k=0}^{n} \binom{n}{k} x^k \frac{f(k)}{n-k+1}
\]

(1.1)

These operators were introduced by Bleimann, Butzer and Hahn [11]. They studied the approximation properties of \(L_n \) when \(f \) belonged to \(C_B(0, \infty) \), the class of all continuous functions on \([0, \infty) \) which are bounded there with norm

\[
\|f\|_{C_B} := \sup_{x \in [0, \infty)} |f(x)|
\]

We in this section consider the problem of determining the largest subclass of \(C(0, \infty) \) on which \((L_n) \) defines a pointwise approximation process. Similar problems have been completely dealt with for the well-known operators of Szasz and Baskakov [26]

For \(F \) in \(C(0, \infty) \), \(F \geq 0 \) on \([0, \infty) \), we denote by \(\{ C(0, \infty)/F(x) \} \), the class of all continuous functions \(f \) on \([0, \infty) \) for which \(f/F \) is bounded in a neighbourhood of infinity. That is,

\[
\{ C(0, \infty)/F(x) \} = \{ f \in C(0, \infty)/f(x) = O(1) \ F(x), \ x \to \infty \}.
\]
We, in this section, prove that \((L_n)\) defines a pointwise approximation process on \(\mathcal{F} := \bigcap_{A > 0} \{ C[0, \infty)/ e^{Ax} \} \). That is, we prove that for \(f\) in \(\mathcal{F}\)

\[
\lim_{n \to \infty} L_n (f; x) = f(x),
\]

for each \(x, 0 < x < \infty\). We also show, by giving a counter example, that \((L_n)\) does not define a pointwise approximation process on \(\{ C[0, \infty)/ e^{Ax} \}\) however small \(A > 0\) is.

THEOREM 1.1. Let \(L_n \ (n=1,2, \ldots)\) be the sequence of operators given by expression (1.1).

Let \(\mathcal{F} := \bigcap_{A > 0} \{ C[0, \infty)/ e^{Ax} \} \). Then for any \(f\) in \(\mathcal{F}\)

\[
\lim_{n \to \infty} L_n (f; x) = f(x)
\]

for each \(x, 0 < x < \infty\).

To prove Theorem 1.1, we require an estimate for the sum

\[
\sum P_{n,k} (x),
\]

where

\[
P_{n,k}(x) = \binom{n}{k} x^k (1+x)^{-n}.
\]

To derive this estimate, we observe the connection between \(L_n\) and the well-known Bernstein operators \(B_n\), defined on \(C[0,1]\) by

\[
B_n (f; x) = \sum_{k=0}^{n} P_{n,k} (x) f\left(\frac{k}{n} \right) \quad (n \in \mathbb{N})
\]
where
\[p_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k} \]

Clearly
\[p_{n,k}(x) = p_{n,k}\left(\frac{x}{1+x}\right), \quad 0 \leq x < \infty \]

For the sums \(\sum p_{n,k}(x) \) we have the following inequality due to S. Bernstein.

Lemma 1.2. ([32, p. 18]). Let
\[p_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k} \]

For any \(x, \ 0 \leq x \leq 1 \),
\[\sum_{|k-nx| \geq 2z(nx(1-x))^{1/2}} p_{n,k}(x) \leq 2 \exp\left(-z^2\right) \]
if \(0 \leq z \leq \frac{3}{2} (nx(1-x))^{1/2} \)

Due to the relation \(p_{n,k}(x) = p_{n,k}\left(\frac{x}{1+x}\right) \), Lemma 1.2. gives rise to the following lemma for the sums \(\sum p_{n,k}(x) \).

Lemma 1.3. Let
\[p_{n,k}(x) = \binom{n}{k} x^k (1+x)^{-n} \]

Suppose \(0 < \delta \leq x \). Then for all \(n \in \mathbb{N} \)
\[\sum_{|\frac{k}{n-k} - x| \geq \delta} p_{n,k}(x) \leq 2 \exp\left(-\frac{\delta^2}{16} \frac{n}{x(1+x)^2}\right) \]
Proof. Now

\[\left| \frac{k}{n-k} - x \right| \geq \delta \]

implies

\[\frac{k}{n} \leq \frac{x - \delta}{1+x-\delta} \quad \text{or} \quad \frac{k}{n} \geq \frac{x + \delta}{1+x+\delta}. \]

This implies that

\[\left| \frac{k}{n} - \frac{x}{1+x} \right| \geq \frac{\delta}{(1+x)(1+x+\delta)} \geq \frac{\delta}{2(1+x)^2}, \]

since \(0 < \delta \leq x\). Also

\[p_{n,k}(x) = p_{n,k}\left(\frac{x}{1+x}\right), \]

where \(p_{n,k}(x)\) is defined as in Lemma 1.2.

Hence

\[\left| \frac{k}{n-k} - x \right| \geq \delta \]

Choose \(z\) such that

\[2z \left[n \frac{x}{1+x} (1 - \frac{x}{1+x}) \right]^{\frac{1}{2}} = \frac{\delta}{2} \left(\frac{n}{(1+x)^2} \right)^{\frac{1}{2}} \]

That is,

\[2z \left(\frac{nx}{(1+x)^2} \right)^{\frac{1}{2}} = \frac{\delta}{2} \left(\frac{n}{(1+x)^2} \right)^{\frac{1}{2}} \]

Hence

\[z = \frac{\delta}{4} \left(\frac{n}{x(1+x)^2} \right)^{\frac{1}{2}} \]
Since \(0 < \delta \leq x \),

\[
0 < z \leq \frac{x}{4} \left(\frac{n}{x(1+x)^2} \right)^{\frac{1}{2}} = \frac{1}{4} \left[n \frac{x}{1+x} \left(1 - \frac{x}{1+x} \right) \right]^{\frac{1}{2}}
\]

Hence by Lemma 1.2.,

\[
\left| \frac{k}{n} - \frac{x}{1+x} \right| \geq \frac{\delta}{2(1+x)^2}
\]

It follows that

\[
\sum_{k=0}^{n-k-1} P_{n,k}(x) \leq 2 \exp \left(-\frac{\delta^2 n}{16x(1+x)^2} \right)
\]

Proof of Theorem 1.1. Suppose \(f \) belongs to \(\mathcal{F} \). Fix \(x > 0 \). Let \(\varepsilon > 0 \) be arbitrary. Choose \(\delta, \ 0 < \delta \leq x \) such that

\[
y \geq 0, \ |y-x| < 2\delta \text{ implies } |f(y)-f(x)| < \varepsilon.
\]

Now

\[
|L_n(f(t); x) - f(x)|
\]

\[
= |L_n(f(t) - f(x); x)|, \text{ since } L_n(1; x) = 1
\]

\[
\leq L_n(|f(t) - f(x)|; x)
\]

\[
= \sum_{k=0}^{n} P_{n,k}(x) |f \left(\frac{k}{n-k+1} \right) - f(x)|,
\]

where \(P_{n,k}(x) \) is defined as in Lemma 1.3.

Now

\[
\left| \frac{k}{n-k} - x \right| < \delta \text{ implies } \left| \frac{k}{n-k+1} - x \right| < 2\delta.
\]
for all large \(n \). This implies, by the choice of \(\delta \), that for such \(n \),

\[
|f\left(\frac{k}{n-k+1}\right) - f(x)| < \varepsilon
\]

Hence for all \(n \) sufficiently large,

\[
|L_n(f;x) - f(x)| < \varepsilon + \sum P_{n,k}(x) \left| f\left(\frac{k}{n-k+1}\right) - f(x) \right|
\]

Now, let

\[
F_f(x) = \max_{0 \leq t \leq x} |f(t)|
\]

Then for all \(n \) sufficiently large

\[
|L_n(f;x) - f(x)| < \varepsilon + 2 F_f(n) \sum P_{n,k}(x) \left| \frac{k}{n-k} - x \right| \geq \delta
\]

\[
\leq \varepsilon + 4 F_f(n) \exp\left(-\frac{\delta^2 n}{16x(1+x)^2}\right), \tag{1.2}
\]

by Lemma 1.3. Since \(f \in \mathcal{F} \), for each \(A > 0 \),

\[
f(x) = O(1) e^{Ax} \quad (x \to \infty).
\]

Also \(f(x) e^{-Ax} \) is bounded on compact subintervals of \([0, \infty)\). Hence

\[
f(x) = O(1) e^{Ax} \quad (0 \leq x < \infty).
\]

It follows that for each \(A > 0 \),

\[
F_f(x) = O(1) e^{Ax} \quad (0 \leq x < \infty).
\]
In particular there exists \(M > 0 \) such that
\[
F_f(t) \leq M \exp \left(\frac{\delta^2 t}{32 x(1+x)^2} \right) \quad (0 \leq t < \infty)
\] (1.3)

From estimates (1.2) and (1.3) it follows that for all \(n \) sufficiently large,
\[
|L_n (f;x) - f(x)| < \epsilon + 4M \exp \left(-\frac{\delta^2 n}{32 x(1+x)^2} \right) < 2\epsilon
\]

Since \(\epsilon > 0 \) is arbitrary, it follows that
\[
\lim_{n \to \infty} L_n (f; x) = f(x)
\]

Also for each \(n \), \(L_n (f; 0) = f(0) \). Hence for each \(x \), \(0 \leq x < \infty \)
\[
\lim_{n \to \infty} L_n (f; x) = f(x)
\]

We close this section by giving a counter example to show that the class \(\mathcal{F} = \bigcap_{A > 0} \{ C[0,\infty); e^{Ax} \} \) in Theorem 1.1 cannot be replaced by the larger class \(\{ C[0,\infty); e^{Ax} \} \) however small \(A > 0 \) is.

THEOREM 1.4. For any \(A > 0 \),
\[
L_n (e^{At}; x) \to \infty \quad (n \to \infty)
\]

for all \(x \) sufficiently large.

Proof. Fix \(A > 0 \).
\[
L_n (e^{At}; x) = \sum_{k=0}^{n} \binom{n}{k} x^k (1+x)^{-n} e^{\frac{Ak}{n-k+1}}
\]
\[x \left(\frac{x}{1+x} \right) e^A \to \infty \quad (n \to \infty) \]

for all \(x > (e^A - 1)^{-1} \)

2. **Approximation of unbounded functions in** \(C[0,\infty) \) **by the Bernstein type rational operators** \(R_n^{(\beta)} \).

Let \(a = (a_n) \) be a sequence of positive numbers. The Bernstein - type rational operators \(R_n(a) \) \((n \in \mathbb{N})\) are defined on \(C[0,\infty) \) by

\[
R_n(a; f; x) = (1+a_nx)^{-n} \sum_{k=0}^{n} \binom{n}{k} (a_nx)^k f\left(\frac{k}{n^{1-\beta}}\right) \quad (2.1)
\]

These operators were introduced by C. Balázs [2]. We denote by \((R_n^{(\beta)}) \), the sequence of operators \((R_n(a)) \) when \(a_n = n^{\beta-1} \). That is, \(R_n^{(\beta)} \) \((n \in \mathbb{N})\) are defined on \(C[0,\infty) \) by

\[
R_n^{(\beta)}(f; x) = (1+n^{\beta-1}x)^{-n} \sum_{k=0}^{n} \binom{n}{k} (n^{\beta-1}x)^k f\left(\frac{k}{n^{1-\beta}}\right) \quad (2.2)
\]

In [2], C. Balázs has shown that if \(a_n \to 0 \) and \(na_n \to \infty \) as \(n \to \infty \), then \((R_n(a)) \) defines a pointwise approximation process on \(\{ C[0,\infty)/e^{Ax} \} \) for each \(A \geq 0 \). For the operators \((R_n^{(\beta)}) \) \((0 < \beta < 1)\) more can be said. We, in this section, prove that for \(0 < \beta < 1 \), \((R_n^{(\beta)}) \) defines a pointwise approximation process on \(\{ C[0,\infty)/x^A x^{\frac{1}{1-\beta}} \} \) for each \(A, 0 \leq A < 1 \).
We also give a counter example to show that the above result cannot be extended to the case when \(A = 1 \).

THEOREM 2.1. Suppose \(0 \leq A < 1 \), \(0 < \beta < 1 \). Then for any \(f \) in
\[
\{ C[0,\infty)/ x^{Ax^{1-\beta}} \}
\]
\[
\lim_{n \to \infty} R_n^{(\beta)}(f; x) = f(x),
\]
for each \(x \), \(0 \leq x < \infty \).

For proving Theorem 2.1, we need an estimate for the partial sum
\[
\left| \frac{k}{n^{\beta}} - \frac{x}{1+a_n x} \right| \geq \delta
\]
where
\[
q_{n,k}(x) = \binom{n}{k} \frac{(a_n x)^k}{(1+a_n x)^n} \frac{(-\frac{k}{n^{\beta}}) A \left(\frac{k}{n^{\beta}} \right)^{1-\beta}}{n^{\beta}}
\]
We first derive this estimate in two lemmas.

LEMMA 2.2. Let \(0 < \beta < 1 \), \(0 < \delta \leq x \). Then for all \(n \in \mathbb{N} \) such that \(n^{1-\beta} \geq 2x \),
\[
\left| \frac{k}{n^{\beta}} - \frac{x}{1+a_n x} \right| \geq \delta
\]
where
\[
r_{n,k}(x) = \binom{n}{k} (a_n x)^k (1+a_n x)^{-n} \quad a_n = n^{\beta-1}
\]
Proof

\[r_{n,k}(x) = p_{n,k} \left(\frac{a_n x}{1+a_n x} \right), \]

where \(p_{n,k}(x) \) is defined as in lemma 1.2.

Hence

\[
\left| \frac{k}{n^\beta} - \frac{x}{1+a_n x} \right| \geq \delta \quad \text{and} \quad \left| k-\frac{a_n x}{1+a_n x} \right| \geq \delta n^\beta.
\]

Choose \(z \) such that

\[
2z \left[\frac{a_n x}{1+a_n x} \left(1- \frac{a_n x}{1+a_n x} \right) \right]^{1/2} = \delta n^\beta.
\]

That is,

\[
2z \frac{(n^\beta x)^{1/2}}{1+a_n x} = \delta n^\beta.
\]

Hence

\[
z = \frac{\delta}{2} \left(\frac{n^\beta x}{x} \right)^{1/2} \left(1+a_n x \right)
\]

Since \(0 < \delta < x \),

\[
z \leq \frac{x}{2} \left(\frac{n^\beta}{x} \right)^{1/2} \left(1+a_n x \right)
\]

\[
= \frac{1}{2} \left[\frac{n a_n x}{(1+a_n x)^2} \right]^{1/2} \left(1+a_n x \right)^2
\]

\[
\leq \frac{9}{8} \left[n \frac{a_n x}{1+a_n x} \left(1- \frac{a_n x}{1+a_n x} \right) \right]^{1/2}.
\]
for \(n^{1-\beta} \geq 2x \). Hence applying Lemma 1.2.,

\[
\sum_{k} P_{n,k} \left(\frac{a_n x}{1+a_n x} \right) \leq 2 \exp(-z^2)
\]

for all \(n \in \mathbb{N} \) such that \(n^{1-\beta} \geq 2x \). Hence for \(0 < \delta \leq x, \ n^{1-\beta} \geq 2x \),

\[
\sum_{k} r_{n,k}(x) \leq 2 \exp\left(-\frac{\delta^2 n^\beta}{4x} \right)
\]

for all \(n \in \mathbb{N} \) such that \(n^{1-\beta} \geq 2x \). Hence for \(a_n < b < 1, a_n < A < 1, \ \gamma > 0, \ \delta > 0 \). Then for each fixed \(x > 0 \),

\[
\sum_{k} q_{n,k}(x) = \sigma(1) n^{-\gamma} \quad (n \to \infty)
\]

where

\[
q_{n,k}(x) = \binom{n}{k} \left(\frac{a_n x}{1+a_n x} \right)^k \left(\frac{k}{n^\beta} \right) A \left(\frac{k}{n^\beta} \right)^{1-\beta} a_n = n^{\beta-1}
\]

Proof Let

\[I = \{ k : k, \ \text{an integer,} \ 0 \leq k \leq n \} \]

\[I_0 = \{ k \in I : \left| \frac{k}{n^\beta} - \frac{x}{1+a_n x} \right| \geq \delta \} \]

We have to estimate

\[
\sum_{k \in I_0} q_{n,k}(x)
\]
We split I into three disjoint sets as follows:

\[I_1 := \{ k \in I : \frac{k+1}{n^\beta} \leq (1+\varepsilon)^2 \} \]

\[I_2 := \{ k \in I - I_1 : k \leq \beta_1 n \} \), where \(\beta_1 = 2^{1-\frac{1}{\beta}} (1-\beta) \]

\[I_3 := I - (I_1 \cup I_2) \]

Now let \(r_{n,k}(x) \) be defined as in Lemma 2.2. That is

\[r_{n,k}(x) = \binom{n}{k} (a_n x)^k (1+a_n x)^{-n} \]

Then

\[\frac{r_{n,k+1}(x)}{r_{n,k}(x)} = \frac{\frac{n-k}{k+1}}{a_n x} \leq \frac{n^\beta x}{k+1} \]

Hence

\[q_{n,k+1}(x) / q_{n,k}(x) \leq \frac{n^\beta x}{k+1} \left(\frac{k+1}{n^\beta} \right)^A (\frac{k+1}{1-\beta})^{1-\beta} \left(\frac{k}{r^\beta} \right)^{-A} \left(\frac{k+1}{1-\beta} \right)^{1-\beta} \]

\[= \frac{n^\beta x}{k+1} \left(\frac{k+1}{k} \right)^A (\frac{k}{n^\beta})^{1-\beta} \left(\frac{k+1}{n^\beta} \right)^A (\frac{k}{r^\beta})^{1-\beta} - (\frac{k}{r^\beta})^{1-\beta} \]

(2.3)

\[(k+1)^{1-\beta} - k^{1-\beta} = (k+1)^{1-\beta} \left[1 - \left(\frac{k}{k+1} \right)^{1-\beta} \right] \]
\[
= (k+1)^{1/\beta} \left[1 - \left(1 - \frac{1}{k+1}\right)^{1/\beta} \right]
\]

\[
\leq (k+1)^{1/\beta} \frac{1}{1-\beta} \frac{1}{k+1}.
\]

using the following inequality: For \(a > 1\),

\[
(1-x)^a \geq 1-ax \quad (0 \leq x \leq 1).
\]

Hence

\[
(k+1)^{1/\beta} \frac{1}{1-\beta} \leq \frac{1}{1-\beta} (k+1)^{1/\beta}
\]

It follows that

\[
(k+1)^{1/\beta} - (\frac{k}{n^\beta})^{1/\beta} \leq \frac{1}{1-\beta} (\frac{k+1}{n})^{1/\beta}
\]

\[
\leq \frac{1}{1-\beta} (\frac{2k}{n})^{1/\beta}, \text{ for } k \neq 0.
\]

\[
\leq \frac{1}{2}, \text{ for } k \in I_2,
\]

since for such \(k\),

\[
2k \leq 2 \beta \leq \left(\frac{1-\beta}{2}\right) \frac{1-\beta}{\beta}
\]

Hence for \(k \in I_2\),

\[
(k+1)^{1/\beta} A(\frac{k+1}{n^\beta})^{1/\beta} - (\frac{k}{n^\beta})^{1/\beta} \leq (\frac{k+1}{n^\beta}) A/2
\]

\[
\leq (\frac{k+1}{n})^{1/2}, \quad (2.4)
\]
since $0 \leq A \leq 1$. Also for k in I_2,

$$\left(\frac{k}{n}\right)^{1-\beta} \leq \frac{1}{k} \left(\frac{k}{n}\right)^{1-\beta} \leq k \left(\frac{\beta}{1-\beta}\right)^{1-\beta} \leq k,$$

since $\frac{\beta}{1-\beta} = 2^{-\frac{1}{\beta}} \left(1-\beta\right)^{1-\beta} < 1$. Hence for such k,

$$\left(\frac{k+1}{k}\right)^{A\left(\frac{k}{n}\right)^{1-\beta}} \leq (1 + \frac{1}{k})^{Ak} \leq e^A \leq e,$$ (2.5)

since $0 \leq A < 1$. Applying estimates (2.4) and (2.5) in inequality (2.3), it follows that for k in I_2,

$$\frac{q_{n,k+1}(x)}{q_{n,k}(x)} \leq \frac{n^\beta}{k+1} \left(\frac{k+1}{n}\right)^{\frac{1}{2}} e$$

$$= \left(\frac{n^\beta}{k+1}\right)^{\frac{1}{2}} ex \leq 1,$$

since k in I_2 implies k not in I_1, so that

$$\frac{k+1}{n^\beta} \geq (1+ex)^2 \geq e^2x^2.$$

Hence for all k in I_2,

$$q_{n,k+1}(x) \leq q_{n,k}(x).$$

Let $k_0 = \min_{k \in I_2} k$. Then for k in I_2,
q_{n,k}(x) \leq q_{n,k_0}(x)

= r_{n,k_0}(x) \frac{k_0}{n^\beta} A \left(\frac{k_0}{n^\beta} \right) \frac{1}{1-\beta}

Since \(k_0 = \min_{k \in I_2} k \), \(k_0 - 1 \) belongs to \(I_1 \).

Hence, using the definition of \(I_1 \),

\[\frac{k_0}{n^\beta} \leq (1+ex)^2, \]

so that

\[\frac{k_0}{n^\beta} A \left(\frac{k_0}{n^\beta} \right) \frac{1}{1-\beta} \leq (1+ex)^2 A(1+ex)^{1-\beta} = a(x), \text{ say.} \]

Hence for all \(k \) in \(I_2 \),

\[q_{n,k}(x) \leq a(x) r_{n,k_0}(x) \]

It follows that

\[\sum_{k \in I_2} q_{n,k}(x) \leq n a(x) r_{n,k_0}(x) \leq n a(x) \sum_{k \in I_2} r_{n,k}(x). \]

Also for \(k \) in \(I_2 \),

\[\frac{k+1}{n^\beta} \geq (1+ex)^2 \geq 1 + ex. \]
Hence
\[
\frac{k}{n^\beta} - \frac{x}{1+a_n x} \geq \frac{k+1}{n^\beta} - x - 1 \geq (e-1)x \geq x.
\]

It follows that
\[
\sum_{k \in I_2} q_{n,k}(x) \leq n \alpha(x) \sum_{r \in \mathbb{I}} r_{n,k}(x)
\]
\[
|\frac{k}{n^\beta} - \frac{x}{1+a_n x}| \geq x
\]

Hence applying Lemma 2.2., for \(n^{1-\beta} \geq 2x \),
\[
\sum_{k \in I_2} q_{n,k}(x) \leq 2n \alpha(x) \exp \left(- \frac{n^\beta x}{4} \right)
\]
\[
= o(1) n^{-\gamma} \quad (n \to \infty)
\] \tag{2.6}

Now if \(k \) belongs to \(I_1 \), then \(k < k_0 \). Hence for such \(k \),
\[
q_{n,k}(x) \leq r_{n,k}(x) \left(\frac{k_0}{n^\beta} \right) A \left(\frac{k_0}{n^\beta} \right) \frac{1}{1-\beta}
\]
\[
\leq \alpha(x) r_{n,k}(x)
\]

Hence
\[
\sum_{k \in I_1 \cap I_0} q_{n,k}(x) \leq \alpha(x) \sum_{r \in I_0} r_{n,k}(x)
\]

Now \(k \) in \(I_0 \),
\[
|\frac{k}{n^\beta} - \frac{x}{1+a_n x}| \geq \delta \geq \delta_0
\]
where $\delta_0 = \min(\delta, x)$. Then for $n^{1-\beta} \geq 2x$,

$$\sum_{k \in I_n \cap J_0} q_{n,k}(x) \leq \alpha(x) \sum_{r_{n,k}(x)} |\frac{k}{n^\beta} - \frac{x}{1+\alpha \cdot x}| \geq \delta_0$$

$$\leq 2 \alpha(x) \exp(-\frac{\delta_0^2 n^\beta}{4x})$$

$$= o(1) n^{-\gamma} \quad (n \to \infty) \quad (2.7)$$

Also for $k \leq n$,

$$\left(\frac{k}{n^\beta}\right) A \left(\frac{k}{\beta n^\beta}\right)^{1-\beta} \leq n(1-\beta)Ak \quad \quad (2.8)$$

since

$$\left(\frac{k}{n^\beta}\right)^{1-\beta} = k \left(\frac{k}{n}\right)^{1-\beta} \leq k.$$

Also

$$r_{n,k}(x) \leq \binom{n}{k} (a_n x)^k$$

$$\leq a_n^k (1+x)^n$$

$$= (1+x)^n n^{-(1-\beta)k} \quad \quad (2.9)$$

From estimates (2.8) and (2.9), for $k \leq n$

$$q_{n,k}(x) \leq \frac{(1+x)^n}{n(1-\beta)(1-A)k} \leq \left(\frac{1+x}{n(1-\beta)(1-A)\beta_1}\right)^n, \quad \text{for} \quad k \in I_3.$$
Hence

\[\sum_{k \in I_3} q_{n,k}(x) \leq n \left(\frac{1+x}{n} \right)^{\frac{1+x}{(1-\beta)(1-A)\beta_1}} \]

\[= o(1) \quad (n \to \infty) \quad (2.10) \]

Now

\[I_0 = I \cap I_0 = (I_1 \cup I_2 \cup I_3) \cap I_0 \subset (I_1 \cap I_0) \cup I_2 \cup I_3. \]

Hence from estimates (2.6), (2.7) and (2.10), it follows that

\[\sum_{k \in I_0} q_{n,k}(x) = o(1) \quad (n \to \infty) \]

That is,

\[\sum q_{n,k}(x) = o(1) \quad (n \to \infty) \]

\[|k - \frac{x}{1+a_n x}| \geq \delta \]

Proof of Theorem 2.1. Fix \(x > 0 \). Let \(\varepsilon > 0 \) be arbitrary. Choose \(\delta > 0 \), \(0 < \delta \leq x \), such that

\[y > 0, \quad |y-x| < 2\delta \quad \text{implies} \quad |f(y) - f(x)| < \varepsilon. \]

Now

\[|R_n^{(\beta)}(f(t); x) - f(x)| \]

\[= |R_n^{(\beta)}(f(t) - f(x); x)|, \text{ since } R_n^{(\beta)}(1; x) = 1 \]
\[R_n^{(\beta)} (\cdot f(t) - f(x) ; x) \]

\[= \sum_{k = 0}^{n} r_{n,k} (x) \left| f \left(\frac{k}{n^{\beta}} \right) - f(x) \right|, \]

where \(r_{n,k} (x) \) is defined as in lemma 2.2. Now

\[| \frac{k}{n^{\beta}} - \frac{x}{1+a_n x} | < \delta \text{ implies } | \frac{k}{n^{\beta}} - x | < \delta + \frac{a_n x^2}{1+a_n x} < 2 \delta, \]

for all \(n \) sufficiently large. This implies, by the choice of \(\delta \), that for all large \(n \),

\[| f \left(\frac{k}{n^{\beta}} \right) - f(x) | < \varepsilon, \quad \text{whenever } | \frac{k}{n^{\beta}} - \frac{x}{1+a_n x} | < \delta \]

Hence for all \(n \) sufficiently large,

\[| R_n^{(\beta)} (f; x) - f(x) | \]

\[< \varepsilon + \sum_{k = 0}^{n} r_{n,k} (x) \left| f \left(\frac{k}{n^{\beta}} \right) - f(x) \right| \]

\[\geq \frac{1}{1-\beta} \]

Since \(f \) belongs to \(\{ C[0, \infty) / x^{A_x^{1-\beta}} \} \)

\[f(t) = O(1) \ t^{\frac{1}{1-\beta}} \quad (t \to \infty) \]

Assigning the function \(t^{\frac{1}{1-\beta}} \) the limiting value 1 at \(t = 0 \), it
becomes a continuous strictly positive function on \([0, \infty)\). It follows that
\[
f(t) = O(1) \, t^{1-\beta} \quad (0 \leq t < \infty).
\]
Hence
\[
\left| \frac{k}{n^\beta} - \frac{x}{1+a_n x} \right| \geq \delta
\]
\[
= O(1) \sum \left| \frac{k}{n^\beta} - \frac{x}{1+a_n x} \right| \geq \delta
\]
\[
= o(1) \, n^{-1} \quad (n \to \infty) \quad (2.12)
\]
Using Lemmas 2.2 and 2.3. From estimates (2.11) and (2.12) it follows that
\[
|R_n^{(\beta)}(f; x) - f(x)| < 2 \varepsilon,
\]
for all \(n\) sufficiently large. Since \(\varepsilon > 0\) is arbitrary, it follows that
\[
\lim_{n \to \infty} R_n^{(\beta)}(f; x) = f(x) \quad (2.13)
\]
Here we had fixed \(x > 0\). For \(x = 0\), since \(R_n^{(\beta)}(f; 0) = f(0)\), the limit in (2.13) holds trivially. Hence for each \(x, 0 \leq x < \infty\),
\[
\lim_{n \to \infty} R_n^{(\beta)} (f; x) = f(x) \]

We conclude this section by giving a counter example to show that Theorem 2.1 cannot be extended to the case when \(A=1 \).

THEOREM 2.4. Suppose \(0 < \beta < 1 \). Then for all \(x > 1 \),

\[
\lim_{n \to \infty} R_n^{(\beta)} \left(\frac{1}{t^{1-\beta}} ; x \right) = \infty .
\]

Proof. Let

\[
f(x) = x^{1-\beta}
\]

Then

\[
R_n^{(\beta)} (f; x) \geq f(n^{1-\beta}) \left(\frac{a_n x}{1+a_n x} \right)^n
\]

\[
= n^{(1-\beta)n} \left(\frac{a_n x}{1+a_n x} \right)^n
\]

\[
= \left(\frac{x}{1+a_n x} \right)^n
\]

Now, if \(x > 1 \), then \(\frac{x}{1+a_n x} > 1 \) for all large \(n \). Hence if \(x > 1 \),

\[
\left(\frac{x}{1+a_n x} \right)^n \to \infty \quad \text{as} \quad n \to \infty
\]

Hence for all \(x > 1 \),

\[
\lim_{n \to \infty} R_n^{(\beta)} \left(\frac{1}{t^{1-\beta}} ; x \right) = \infty .
\]
3. Approximation of analytic functions by the operators \(L_n \) and \(R_n^{(\beta)} \)

In this section we are concerned with the behaviour of the rational functions

\[
L_n (f; z) = (1+z)^{-n} \sum_{k=0}^{n} \binom{n}{k} z^k \frac{f\left(\frac{k}{n-k+1}\right)}{n-k+1}
\]

(3.1)

and

\[
R_n^{(\beta)} (f; z) = (1+a_n z)^{-n} \sum_{k=0}^{n} \binom{n}{k} (a_n z)^k f\left(\frac{k}{n^{\beta}}\right),
\]

(3.2)

where \(a_n = n^{\beta-1} \), \((0 < \beta < 1)\)

for complex values of \(z \) outside the interval \(0 \leq z < \infty \). We now assume that \(f(z) \) is defined and analytic in a certain region containing \([0, \infty)\). For the Bernstein operators similar problem was discussed by Wright [65], Kantorovitch [29] and later by S.Bernstein [8], [9], [10]. B.Wood and S. Eisenberg has discussed similar problems for the various Bernstein - type operators [24], [63], [64].

We observe that for the operators \(L_n \) defined by expression 3.1.,

\[
L_n (t; z) = (1+z)^{-n} \sum_{k=0}^{n} \binom{n}{k} z^k \frac{k}{n-k+1}
\]

\[
= (1+z)^{-n} \sum_{k=1}^{n} \binom{n}{k-1} z^k
\]

\[
= z - z \left(\frac{z}{1+z}\right)^n
\]
Hence

\[L_n(t; z) \to z \quad (n \to \infty), \]

if and only if \(z \) lies in the half plane \(H \) where

\[H := \{ z : \frac{Z}{1+Z} < 1 \}. \]

We, in this section, prove that if \(f(z) \) is any function analytic in the half plane \(H \) and satisfying certain suitable growth restriction, then \(L_n(f; z) \) converges to \(f(z) \) uniformly on compact subsets of \(H \). Regarding the convergence of the operators \(R_n^{(\beta)}(f; z) \), we prove that if \(f(z) \) is an entire function, that is, a function analytic in the entire complex plane and if \(f(z) \) satisfies some suitable growth restriction, then \(R_n^{(\beta)}(f; z) \) converges to \(f(z) \) uniformly on compact subsets of the complex plane.

For arriving at these results we mainly depend on the following theorem of Vitali.

THEOREM (Vitali, §6 , p. 168)

Let \(\{ f_n(z) \} \) be a sequence of functions each analytic in a region \(\Omega \) and let

\[|f_n(z)| \leq M \quad (n \in \mathbb{N}, \ z \in \Omega). \]

Suppose \(f_n(z) \) tend to a limit as \(n \) tends to infinity on a set of points having a limit point inside \(\Omega \). Then \(f_n(z) \) tends uniformly to a limit in any region bounded by a contour interior to \(\Omega \), the limit being therefore an analytic function of \(z \).
Throughout this section we refer to the above theorem by the name Vitali's theorem. We, in this section, also make use of the following inequality.

Lemma 3.1. [13, p. 13]. Suppose
\[f(z) = \sum_{n=0}^{\infty} a_n z^n \]
is analytic in \(|z| \leq R\). For \(0 < r \leq R\), let \(M_1(r; f)\) and \(M_2(r; f)\) be defined as follows:

\[M_1(r; f) = \max_{|z|=r} |f(z)| \]
\[M_2(r; f) = \left[\sum_{n=0}^{\infty} |a_n|^2 r^{2n} \right]^{\frac{1}{2}} \]

Then for \(0 < r < R\),

\[M_2(r; f) \leq M_1(r; f) \leq \left(\frac{R+r}{R-r} \right)^{\frac{1}{2}} M_2(R; f) \]

We also require certain estimates for \(L_n((\frac{t}{1+t})^m; z)\) and \(R_n^{(\beta)}(t^m; z)\). We derive them next.

Lemma 3.2. Suppose \(a > 0\), \(m \in \mathbb{N}\).

(i) For all \(z\) such that \(|\frac{z}{1+z}| \leq a\) and for all \(n \in \mathbb{N}\),

\[|L_n((\frac{t}{1+t})^m; z)| \leq L_n((\frac{t}{1+t})^m; \frac{a}{1-a}) \]

(ii) For all \(z\) such that \(|z| \leq a\) and for all \(n \in \mathbb{N}\), \(n \geq (4a)^{\frac{1}{1-\beta}}\)

\[|R_n^{(\beta)}(t^m; z)| \leq R_n^{(\beta)}(t^m; 2a) \]
Proof. Let \(\{ B_n \} \) be the well-known Bernstein operators defined for functions \(f \) whose domain contains \([0, 1]\) by

\[
B_n(f; z) = \sum_{k=0}^{n} \binom{n}{k} z^k (1-z)^{n-k} f\left(\frac{k}{n}\right).
\]

It is known that (See [24, proof of Theorem 2.1]) \(B_n(t^m; z) \) has non-negative Taylor coefficients. Hence

\[
|B_n(t^m; z)| \leq B_n(t^m; a) \quad (|z| \leq a; n \in \mathbb{N})
\]

(3.3)

Now

\[
L_n\left((\frac{t}{1+t})^m; z\right) = (1+z)^{-n} \sum_{k=0}^{n} \binom{n}{k} z^k \left(\frac{k}{n+1}\right)^m
\]

\[
= \left(\frac{n}{n+1}\right)^m B_n\left(t^m; \frac{z}{1+z}\right)
\]

Hence using estimate (3.3), for \(\left|\frac{z}{1+z}\right| < a \) and for all \(n \in \mathbb{N} \),

\[
|L_n((\frac{t}{1+t})^m; z)| \leq \left(\frac{n}{n+1}\right)^m B_n(t^m; a)
\]

\[
= L_n((\frac{t}{1+t})^m; \frac{a}{1-a})
\]

This proves (i) of lemma 3.2.

Suppose \(|z| \leq a \) and \(n \geq (4a)^{1-\beta} \). Then

\[
\left|\frac{a_n z}{1+a_n z}\right| \leq \frac{a_n a}{1-a_n a} \leq \frac{a_n a}{1+2a_n a} \cdot \frac{1+2a_n a}{1-a_n a} \leq \frac{2a_n a}{1+2a_n a}
\]

(3.4)

since \(a_n a \leq \frac{1}{4} \).
Also

\[
R_n^{(\beta)}(t^m; z) = (1+a_n z)^{-n} \sum_{k=0}^{n} \binom{n}{k} (a_n z)^k \frac{k^m}{n^\beta}
\]

\[= n^{(1-\beta)m} B_n(t^m; \frac{2a_n z}{1+2a_n z})
\]

From expression (3.5), using (i) of lemma 3.2 and estimate (3.4), it follows that

\[|R_n^{(\beta)}(t^m; z)| \leq n^{(1-\beta)m} B_n(t^m; \frac{2a_n z}{1+2a_n z})
\]

\[= R_n^{(\beta)}(t^m; 2a)
\]

This proves (ii) of Lemma 3.2.

We are now in a position to prove the two main theorems of this section. We state them first.

THEOREM 3.3. Let \(f(z) \) be analytic in the half plane

\[H = \{ z : \left| \frac{z}{1+z} \right| < 1 \} = \{ z : \text{Real } z > - \frac{1}{2} \}
\]

For each \(r, \ 0 < r < 1 \), let

\[M_0(r; f) = \max_{\left| \frac{z}{1+z} \right| = r} |f(z)|
\]

Suppose

\[\limsup_{r \to 1^-} [M_0(r; f)]^{1-r} \leq 1.
\]
Then $L_n(f; z)$ converges to $f(z)$ uniformly on compact subsets of H.

THEOREM 3.4. Let $f(z)$ be an entire function. For each $r > 0$, let

$$M_1(r; f) = \max_{|z| = r} |f(z)| .$$

Suppose for some β, $0 < \beta < 1$,

$$\limsup_{r \to \infty} \frac{\log M_1(r; f)}{\frac{1}{r^{1-\beta}} \log r} < 1 .$$

Then $R_n^{(\beta)}(f; z)$ converges to $f(z)$ uniformly on compact subsets of the complex plane.

Proof of Theorem 3.3. Since $f(z)$ is analytic in the half plane

$$H = \{ z : \frac{z}{1+z} < 1 \} ,$$

$f\left(\frac{z}{1-z}\right)$ is analytic in the disc $|z| < 1$. $f\left(\frac{z}{1-z}\right)$ has therefore a Taylor series expansion, say

$$f\left(\frac{z}{1-z}\right) = \sum_{m=0}^{\infty} c_m z^m , \quad |z| < 1 .$$

Hence for all z in H, $f(z)$ has an expansion

$$f(z) = \sum_{m=0}^{\infty} c_m \left(\frac{z}{1+z}\right)^m .$$

Since the series $\sum_{m=0}^{\infty} c_m z^m$ represents an analytic function in $|z| < 1$, the series $\sum_{m=0}^{\infty} |c_m| z^m$ also represents a function analytic in $|z| < 1$.
Hence
\[f_1(z) = \sum_{m=0}^{\infty} |c_m| \left(\frac{z}{1+z} \right)^m \]
is analytic in the half-plane H.

For \(0 < r < 1 \), let
\[M_0(r; f_1) = \max \{ |f_1(z)| : \left| \frac{z}{1+z} \right| = r \} \]
\[= \max \{ |f_1\left(\frac{z}{1-z} \right)| : |z| = r \} . \]

Then applying Lemma 3.1.,
\[M_0(r; f_1) \leq \left(\frac{1+3r}{1-r} \right)^{\frac{1}{2}} \left\{ \sum_{m=0}^{\infty} |c_m|^2 \left(\frac{1+r}{2} \right)^{2m} \right\}^{\frac{1}{2}} \]
\[\leq \left(\frac{4}{1-r} \right)^{\frac{1}{2}} \max \{ |f\left(\frac{z}{1-z} \right)| : |z| = \frac{1+r}{2} \} \]
\[= \left(\frac{4}{1-r} \right)^{\frac{1}{2}} \max \{ |f(z)| : \left| \frac{z}{1+z} \right| = \frac{1+r}{2} \} \]
\[= \left(\frac{4}{1-r} \right)^{\frac{1}{2}} M_0\left(\frac{1+r}{2} ; f \right) . \]

Also
\[\left(\frac{4}{1-r} \right)^{\frac{1}{2}} (1-r) \rightarrow 1 \quad \text{as} \quad r \rightarrow 1^- . \]

Hence
\[\limsup_{r \rightarrow 1^-} [M_0(r; f_1)]^{1-r} \leq \limsup_{r \rightarrow 1^-} [M_0\left(\frac{1+r}{2} ; f \right)]^{1-r} \]
\[= \limsup_{r \rightarrow 1^-} [M_0(r; f)]^{2(1-r)} \]
\[\leq 1. \]
by assumption of Theorem 3.3. Hence given any $A > 0$,

$$f_1(x) = O(1) e^{Ax} \ (0 < x < \infty, \ x \to \infty)$$

Since $|f(x)| \leq f_1(x)$ for x in $[0, \infty)$, it follows that both the functions $f/[0, \infty)$ and $f_1/[0, \infty)$ belong to $\{ C[0, \infty) / e^{Ax} \}$ for each $A > 0$. (Here $f/[0, \infty)$ stands for the function f with domain restricted to $[0, \infty)$).

Hence $f/[0, \infty)$ and $f_1/[0, \infty)$ belong to $\bigcap_{A>0} \{ C[0, \infty) / e^{Ax} \}$. It follows, using Theorem 1.1, that for each x, $0 \leq x < \infty$,

$$\lim_{n \to \infty} L_n(f; x) = f(x) \quad (3.6)$$

and

$$\lim_{n \to \infty} L_n(f_1; x) = f_1(x) \quad (3.7)$$

Clearly $z = -1$ is the only singularity of the rational function $f(z)$. Also

$$f(\frac{k}{n-k+1}) = \sum_{m=0}^{\infty} c_m \left(\frac{k}{n+1} \right)^m \ (k = 0, \ldots, n; \ n \in \mathbb{N})$$

Hence for all $z \neq -1$,

$$L_n(f; z) = \sum_{k=0}^{n} \binom{n}{k} z^k (1+z)^{-n} f(\frac{k}{n-k+1})$$

$$= \sum_{m=0}^{\infty} c_m \sum_{k=0}^{n} \binom{n}{k} z^k (1+z)^{-n} (\frac{k}{n+1})^m$$

$$= \sum_{m=0}^{\infty} c_m L_n \left((\frac{t}{1+t})^m ; z \right).$$
Hence if $|\frac{z}{1+z}| \leq a < 1$, by (i) of Lemma 3.2,

$$|L_n(f; z)| \leq \sum_{m=0}^{\infty} |c_m| L_n\left(\left(\frac{t}{1+t}\right)^m ; \frac{a}{1-a}\right)$$

$$= L_n(f_1 ; \frac{a}{1-a})$$

$$\rightarrow f_1(\frac{a}{1-a}) \text{ as } n \rightarrow \infty,$$

using expression (3.7). Hence $L_n(f; z)$ is uniformly bounded in

$|\frac{z}{1+z}| \leq a$ for each a, $0 < a < 1$. That is, for each a, $0 < a < 1$,

$$\sup \{ |L_n(f; z)| : |\frac{z}{1+z}| \leq a; \ n \in \mathbb{N} \} < \infty \quad (3.8)$$

From (3.6) and (3.8), it now follows, by Vitali's theorem, that

$L_n(f; z)$ converges to $f(z)$ on compact subsets of the half plane H. ##

Proof of Theorem 3.4. Since $f(z)$ is an entire function, it has a Taylor series expansion

$$f(z) = \sum_{m=0}^{\infty} c_m z^m,$$

the series converging absolutely for each z in the complex plane. Since the series $\sum_{m=0}^{\infty} c_m z^m$ and the series $\sum_{m=0}^{\infty} |c_m| z^m$ have the same radii of convergence, it follows that

$$f_1(z) = \sum_{m=0}^{\infty} |c_m| z^m$$
is also an entire function. For \(r > 0 \), let

\[
M_1(r; f_1) = \max_{|z| = r} |f_1(z)|.
\]

Then by Lemma 3.1.,

\[
M_1(r; f_1) \leq (2r + 1)^{\frac{1}{2}} \left\{ \sum_{m=0}^{\infty} |c_m|^2 (r+1)^{2m} \right\}^{\frac{1}{2}} \\
\leq (2r + 1)^{\frac{1}{2}} M_1(r+1; f)
\]

Hence

\[
\log M_1(r; f_1) \leq \frac{1}{2} \log (2r + 1) + \log M_1(r+1; f)
\]

Also

\[
\frac{\log (2r + 1)}{\frac{1}{r^{1-\gamma}} \log r} \to 0 \text{ as } r \to \infty
\]

Hence

\[
\limsup_{r \to \infty} \frac{\log M_1(r; f_1)}{\frac{1}{r^{1-\gamma}} \log r} \leq \limsup_{r \to \infty} \frac{\log M_1(r+1; f)}{\frac{1}{r^{1-\gamma}} \log r} = \limsup_{r \to \infty} \frac{\log M_1(r+1; f)}{\frac{1}{(r+1)^{1-\beta}} \log (r+1)} < 1,
\]

by assumption of Theorem 3.4.
That is
\[
\lim_{r \to \infty} \sup_{r} \frac{\log M_{1}(r; f_{1})}{1 - \frac{1}{1 - \beta} \log r} \leq A < 1,
\]
for some \(A, \ 0 < A < 1 \). Let \(A < A_{1} < 1 \). Then for all \(r \) sufficiently large,
\[
\log M_{1}(r; f_{1}) \leq A_{1} r^{1 - \beta} \log r
\]
Hence
\[
M_{1}(r; f_{1}) = O(1) r^{A_{1} r^{1 - \beta}} \quad (r \to \infty)
\]
It follows that
\[
f_{1}(r) = O(1) r^{A_{1} r^{1 - \beta}} \quad (0 \leq r < \infty, \ r \to \infty)
\]
Since \(|f(r)| \leq f_{1}(r) \) on \([0, \infty)\), it follows that both the functions
\(f/(0, \infty) \) and \(f_{1}/(0, \infty) \) belong to \(\{ C[0, \infty) / x^{1/(1 - \beta)} \} \). Since \(A_{1} < 1 \),
using Theorem 2.1., it follows that for each \(x, 0 \leq x < \infty \),
\[
\lim_{n \to \infty} R_{n}^{(\beta)} (f; x) = f(x) \quad (3.9)
\]
and
\[
\lim_{n \to \infty} R_{n}^{(\beta)} (f_{1}; x) = f_{1}(x) \quad (3.10)
\]
Clearly \(z = -a_{n}^{-1} = -n^{1 - \beta} \) is the only singularity of the rational
function \(R_{n}^{(\beta)} f; z \). Also
\[
f_{n}^{(\beta)} = \sum_{m=0}^{\infty} c_{m} (\frac{k}{\beta})^{m}.
\]
Hence

\[R_n(\beta)(f; z) = \sum_{k=0}^{\infty} \binom{n}{k} (a_n z)^k (1 + a_n z)^{-n} f\left(\frac{k}{n^{\beta}}\right) \]

\[= \sum_{m=0}^{\infty} c_m \sum_{k=0}^{n} \binom{n}{k} (a_n z)^k (1 + a_n z)^{-n} \left(\frac{k}{n^{\beta}}\right)^m \]

\[= \sum_{m=0}^{\infty} c_m R_n(\beta)(t^m; z). \]

Hence if \(|z| \leq a\), by (ii) of Lemma 3.2.,

\[|R_n(\beta)(f; z)| \leq \sum_{m=0}^{\infty} |c_m| |R_n(\beta)(t^m; z)| \]

\[\leq \sum_{m=0}^{\infty} |c_m| R_n(\beta)(t^m; 2a), \]

for all \(n \in \mathbb{N}, \ n \geq (4a)^{1-\beta}\). It follows that for all \(n \geq (4a)^{1-\beta}\) and for all \(z\) such that \(|z| \leq a\),

\[|R_n(\beta)(f; z)| \leq R_n(\beta)(f_1; 2a) + f_1(2a) \text{ as } n \to \infty \]

using expression (3.10). Hence for any \(a > 0\),

\[\sup \{ |R_n(\beta)(f; z)| : |z| \leq a; \ n \geq (4a)^{1-\beta} \} < \infty \quad (3.11) \]

From (3.9) and (3.11), it now follows by Vitali's theorem, that

\(R_n(\beta)(f; z)\) converges uniformly to \(f(z)\) on compact subsets of the complex plane.