TABLE OF CONTENTS

ACKNOWLEDGEMENTS (i)

NOTATIONS (ii)

LIST OF SYMBOLS (iii)

INTRODUCTION 1

CHAPTER I CONVERGENCE THEOREMS 29

1. Approximation of unbounded functions in \(C(0,\infty) \) by the Bernstein-type rational operators \(L_n \) 29

2. Approximation of unbounded functions in \(C(0,\infty) \) by the Bernstein-type rational operators \(R^{(\beta)}_n \) 36

3. Approximation of analytic functions by the operators \(L_n \) and \(R^{(\beta)}_n \) 50

CHAPTER II DIRECT THEOREMS 62

1. A global direct theorem for the operators \(L_n \) when \(f \) belongs to \(\{ C(0,\infty)/x^A \} \) \((A \geq 0) \) 64

2. A direct theorem for the operators \(L_n \) associated with the approximation in the norm over the space \(\{ C(0,\infty)/x^A \} \) \((A \geq 0) \) 75

3. Direct theorem associated with uniform approximation for the operators \(R^{(\beta)}_n \) 98

4. A local direct theorem for the operators \(L_n \) 109

CHAPTER III INVERSE THEOREMS 116

1. A global inverse theorem for the operators \(L_n \) when \(f \) belongs to \(\{ C(0,\infty)/x^A \} \) \((A \geq 0) \) 116

2. An inverse theorem for the operators \(L_n \) associated with approximation in the norm over the space \(\{ C(0,\infty)/x^A \} \) \((A \geq 0) \) 135
3. Inverse theorem associated with uniform approximation for the operators $R_n^{(\beta)}$

4. A local inverse theorem for the operators L_n

CHAPTER IV LIPSCHITZ-NIKOLSKII CONSTANTS

1. A strong asymptotic analysis of
$$R_n^{(\beta)}\left(\frac{|t-x/(1+a_n x)|^q}{q};x\right) \quad (0 < a < 2, \ 0 < \beta < 1)$$

2. Lipschitz-Nikolskiǐ Constants for the operators $R_n^{(\beta)}$

CHAPTER V SATURATION

1. Voronovskaja type theorems for the operators L_n

2. Voronovskaja type theorems for the operators $R_n^{(\beta)}$

3. Various saturation theorems for the operators L_n

4. Saturation theorem associated with uniform approximation for the operators $R_n^{(\beta)}$

BIBLIOGRAPHY

APPENDIX

* * * * *