7. REFERENCES

28 KB Kurakhmaeva, IA Djindjikhashvli, VE Petrov et. al., Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target 2009 (17) 564-574.

<table>
<thead>
<tr>
<th>Reference Number</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>J Kreuter</td>
<td>The mechanism of termination in heterogeneous polymerization</td>
<td>J Polym Sci</td>
<td>1982</td>
</tr>
<tr>
<td>44</td>
<td>J Prasad Rao, EK Geckeler</td>
<td>Polymer nanoparticles: Preparation techniques and size control parameters</td>
<td>Progress in Polymer Science</td>
<td>2011</td>
</tr>
<tr>
<td>45</td>
<td>H Fessi, F Puisieux, JP Devissaguet et al.</td>
<td>Nanocapsule formation by interfacial deposition following solvent displacement</td>
<td>Int J Pharm</td>
<td>1989</td>
</tr>
<tr>
<td>48</td>
<td>L Torini, JF Argillier, N Zydowicz</td>
<td>Interfacial polycondensation encapsulation in miniemulsion</td>
<td>Macromolecules</td>
<td>2005</td>
</tr>
<tr>
<td>50</td>
<td>D Sarkar, El Khoury J, ST Lopina et al.</td>
<td>An effective method for preparing polymer nanocapsules with hydrophobic acrylic shell and hydrophilic interior by inverse emulsion radical polymerization</td>
<td>Macromolecules</td>
<td>2005</td>
</tr>
<tr>
<td>52</td>
<td>M Gasco, M Trotta</td>
<td>Nanoparticles from microemulsions</td>
<td>Int J Pharm</td>
<td>1986</td>
</tr>
<tr>
<td>53</td>
<td>S Watnasirichaikul, NM Davies, T Rades et al.</td>
<td>Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions</td>
<td>Pharm Res</td>
<td>2000</td>
</tr>
<tr>
<td>Page</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

77 MJ Meziani, P Pathak, R Hurezeanu et. al., Supercritical fluid processing technique for nanoscale polymer particles. Angew Chem Int Ed. 2004 (43) p 7047.

References

94 KH Bae, Y Lee, TG Park et al., Oil encapsulating PEO-PPO-PEO/PPO shell cross-linked nanocapsules for target-specific delivery of paclitaxel. Biomacromolecules. 2007 (8) 650-656.

119 H Xi, Y Yang , D Zhao et. al., Transdermal patches for site-specific delivery of Anastrozole: In vitro and local tissue disposition evaluation. Int J Pharm. 2010 (391) 73-78.

123 C Valentina, E Hanna, S Anna et al., In Vitro Delivery of Nano and Micro Particles to Human Retinal Pigment Epithelial (ARPE-19) Cells. Drug dev and del 2002 (2) 1-5.

129 R Veloo Kutty, Si-Shen Feng, Cetuximab conjugated vitamin E TPGS micelles for targeted delivery of docetaxel for treatment of triple negative breast cancers. Biomaterials. 2013 (34) 10160-10171.

133 WH Yeo, T Ramasamy, DW Kim DW et. al., Docetaxel-loaded thermosensitive liquid suppository: optimization of rheological properties. Arch Pharm Res. 2013 (36) 1480-1486.

144 Y Li, F Yang, W Chen et. al., A novel monomethoxy polyethylene glycol-polylactic acid polymeric micelles with higher loading capacity for docetaxel and well-reconstitution characteristics and its anti-metastasis study. Chem Pharm Bull (Tokyo). 2012 (60) 1146-1154.

LV Pi-Ping, Ma Yu-Feng, Yu Rong Yu et al., Targeted Delivery of Insoluble Cargo (Paclitaxel) by PEGylated Chitosan Nanoparticles Grafted with Arg-Gly-Asp (RGD). Mol Pharmaceutics. 2012 (9) 1736–1747.

M Malhotra, C Lane, C Tomaro-Duchesneau et al., Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA. Int J Nanomedicine. 2013 (8) 2041-2052.

Q Tian, ,CN Zhang, XH Wang XH et al., Glycyrrhetinic acid-modified chitosan/poly(ethylene glycol) nanoparticles for liver-targeted delivery. Biomaterials. 2010 (31) 4748-4756.

M Malhotra, C Lane, C Tomaro-Duchesneau et al., Characterizing PEGylated chitosan nanoparticles in terms of size and zeta potential for gene delivery applications. Nanotech conference and expo. 2009, May 3-7, Houston TX.

178 KN Kumar, NA Raju, SS Raju et. al., Estimation of Docetaxel in parenterals by RP-HPLC. Asian J Chem. 2010 (22) 7513-7518.

179 A Andersen, DJ Warren, PF Brunsvig et. al., High sensitive assay for docetaxel and paclitaxel in plasma using solid phase extraction and high-performance liquid chromatography with UV Detection. BMC Clin Pharm. 2006 (6) 1-10.

182 Glyn O Phillips, Peter A. Williams. A Handbook of Hydrocolloids. Section 4.3.1. p 89-90

206 B Magenhein, MY Levy, SA Benita, New in vitro technique for the evaluation of release profile from colloidal carriers- ultrafiltration technique at low pressure. Int J Pharm. 1993 (94) 115-123.

208 H. Reddy, R.S.R. Murthy, Biomed papers, Pharmacokinetics and biodistribution studies of Doxorubicin loaded poly (Butyl cyanoacrylate) nanoparticles synthesize by two different method. 2004: 148, 161-166

209 Li Su, Ji Zhaoshuai, Zou Meiju et al. AAPS PharmaSci Tech, Preparation, characterization, pharmacokinetics and tissue distribution of solid lipid nanoparticles loaded with Tetradine. 2011: 12 (3) 1011-1018.

213 L Erica, Bradshaw-pierce, SG Eckhardt et. al., A pharmacological model of docetaxel disposition: from mouse to man. 2007 (13)
2768-2776.

215 Xia Wenschui, Liu Ping, Z Jiali et. al., Biological activities of chitosan and chitooligosaccharides, Food Hydrocolloids. 2010 (1) 1-10.
