List of figures- Chapter 1.

Supporting

Figure 1a-d: Measurement of accessory gland size, main cell number and cell size of accessory gland and gland size A) Accessory gland lobe. B. Marked accessory gland lobe for measuring the size of the accessory gland. C and D. Measurement of main cell size of accessory gland lobe

20

Supporting

Figure 2a-b: Sample taken to measure of quantity of Acps using the secretion alone (A. Secretion with membrane. B. Secretion without membrane)

20

Figure 1a-c: Female mate preference for male age in three rearing temperatures using cross sectional study of D. melanogaster (N=50; df. 1)

40

Figure 2: Male age effect on quantity of Acps of unmated males in three rearing temperatures using cross sectional study of D. melanogaster

42

Figure 3: Male age effect on main cells number of accessory glands in three rearing temperatures using cross sectional study of D. melanogaster

43

Figure 4: Male age effect on main cell size of accessory glands in three rearing temperatures using cross sectional study of D. melanogaster

44

Figure 5: Male age effect on accessory gland size in three raring temperatures using cross sectional study of D. melanogaster

45

Figure 6: Male age effect on Acps quantity of mated males in three rearing temperatures using cross sectional study of D. melanogaster

46
Figure 7: Male age effect on transferred quantity of Acps to the mated females in three rearing temperatures using cross sectional study of D. melanogaster. [Transferred quantity of Acps was calculated by subtracting Acps of mated males from unmated males] 47

Figure 8: Male age effect on quantity of sperm transferred to the mated female in three rearing temperatures using cross sectional study of D. melanogaster 48

Figure 9a: Male age effect on mating latency in three rearing temperatures using cross sectional study of D. melanogaster 49

Figure 9b: Male age effect on mating latency in three rearing temperatures using longitudinal study of D. melanogaster 50

Figure 10a: Male age effect on copulation duration in three rearing temperatures using cross sectional study of D. melanogaster 51

Figure 10b: Male age effect on copulation duration in three rearing temperatures using longitudinal study of D. melanogaster 53

Figure 11a-e: Male age effect on male courtship activities in three rearing temperatures using cross sectional study of D. melanogaster 54

Figure 11 f-h: Male age effect on male courtship activities in three rearing temperatures using longitudinal study of D. melanogaster 55

Figure 12a: Male age effect on female rejection responses in three rearing temperatures using cross sectional study of D. melanogaster 58

Figure 12b: Male age effect on female rejection responses in three rearing temperatures using longitudinal study of D. melanogaster 59
Figure 13a: Male age effect on male mating ability in three rearing temperatures using cross sectional study of *D. melanogaster* 62

Figure 13b: Male age effect on male mating ability in three rearing temperatures using longitudinal study of *D. melanogaster* 63

Figure 14a: Male age effect on egg number (fecundity) in three rearing temperatures using cross sectional study of *D. melanogaster* 64

Figure 14b: Male age effect on egg number (fecundity) in three rearing temperatures using longitudinal study of *D. melanogaster* 65

Figure 15a: Male age effect on progeny number (fertility) in three rearing temperatures using cross sectional study of *D. melanogaster* 66

Figure 15b: Male age effect on progeny number (fertility) in three rearing temperature using longitudinal study of *D. melanogaster* 67

Figure 16: Survival curve of females mated to different male age using cross sectional study of *D. melanogaster* in three rearing temperature 68
List of figures- Chapter 2

Figure 17a-c: Female mate preference for sons of different male age in three rearing temperatures using cross sectional study of *D. melanogaster* (N=50; df. 1) 88

Figure 18a: Male age effect on son’s mating latency in three rearing temperatures using cross sectional study of *D. melanogaster* 89

Figure 18b: Male age effect on son’s mating latency in three rearing temperatures using longitudinal study of *D. melanogaster* 90

Figure 19a: Male age effect on son’s copulation duration in three rearing temperatures using cross sectional study of *D. melanogaster* 91

Figure 19b: Male age effect on son’s copulation duration in three rearing temperatures using longitudinal study of *D. melanogaster* 92

Figure 20a-e: Male age effect on son’s courtship activities in three rearing temperatures using cross sectional study of *D. melanogaster* 94

Figure 20 f-j: Male age effect on son’s courtship activities in three rearing temperatures using longitudinal study of *D. melanogaster* 96

Figure 21a: Female rejection responses to sons of different male age in three rearing temperatures using cross sectional study of *D. melanogaster* 99

Figure 21b: Female rejection responses to sons of different male age in three rearing temperatures using longitudinal study of *D. melanogaster* 100

Figure 22a: Male age effect on son’s mating ability in three rearing temperatures using cross sectional study of *D. melanogaster* 103
Figure 22b: Male age effect on son’s mating ability in three rearing temperatures using longitudinal study of *D. melanogaster* 104

Figure 23a: Male age effect on quantity of son’s Acps (unmated sons) in three rearing temperatures using cross sectional study of *D. melanogaster* 105

Figure 23b: Male age effect on quantity of son’s Acps (unmated sons) in three rearing temperatures using longitudinal study of *D. melanogaster* 106

Figure 24a: Male age effect on main cells number in son’s accessory gland in three rearing temperatures using cross sectional study of *D. melanogaster* 107

Figure 24b: Male age effect on main cells number in son’s accessory gland in three rearing temperatures using longitudinal study of *D. melanogaster* 108

Figure 25a: Male age effect on main cell size in son’s accessory gland in three rearing temperatures using cross sectional study of *D. melanogaster* 109

Figure 25b: Male age effect on main cell size in son’s accessory gland in three rearing temperatures using longitudinal study of *D. melanogaster* 110

Figure 26a: Male age effect on son’s accessory gland size in three rearing temperatures using cross sectional study of *D. melanogaster* 111

Figure 26b: Male age effect on son’s accessory gland size in three rearing temperatures using longitudinal study of *D. melanogaster* 112

Figure 27a: Male age effect on quantity of son’s Acps (mated sons) in three rearing temperatures using cross sectional study of *D. melanogaster* 113
Figure 27b: Male age effect on quantity of son’s Acps (mated sons) in three rearing temperatures using longitudinal study of *D. melanogaster* 114

Figure 28a: Male age effect on transferred quantity of son’s Acps to the mated female in three rearing temperatures using cross sectional study of *D. melanogaster* 115

Figure 28b: Male age effect on transferred quantity of son’s Acps to the mated female in three rearing temperatures using longitudinal study of *D. melanogaster* 116

Figure 29a: Male age effect on transferred quantity of son’s sperm to the mated female in three rearing temperatures using cross sectional study of *D. melanogaster* 117

Figure 29b: Male age effect on transferred quantity of son’s sperm to the mated female in three rearing temperatures using longitudinal study of *D. melanogaster* 118

Figure 30a: Egg number (fecundity) of females mated to sons of different male age in three rearing temperatures using cross sectional study of *D. melanogaster* 119

Figure 30b: Egg number (fecundity) of females mated to sons of different male age in three rearing temperatures using longitudinal study of *D. melanogaster* 120

Figure 31a: Progeny number (fertility) of female mated to sons of young, middle aged and old males in three rearing temperatures using cross sectional study of *D. melanogaster* 121

Figure 31b: Progeny number (fertility) of female mated to sons of young, middle aged and old males in three rearing temperatures using longitudinal study of *D. melanogaster* 122
Figure 32a: Son’s survival curve of young, middle aged and old male in three rearing temperature using cross sectional study of *D. melanogaster*  

Figure 32b: Son’s survival curve of young, middle aged and old male in three rearing temperatures of using longitudinal study of *D. melanogaster*  

Figure 33a: Male age effect on daughter’s mating success in three rearing temperatures using cross sectional study of *D. melanogaster*  
(N=50; df. 1).  

Figure 33b: Male age effect on daughter’s mating success in three rearing temperatures using longitudinal study of *D. melanogaster*  
(N=50; df. 1)  

Figure 34a: Male age effect on daughter’s egg number (fecundity) in three rearing temperatures using cross sectional study in *D. melanogaster*  

Figure 34b: Male age effect on daughter’s egg number (fecundity) in three rearing temperatures using longitudinal study in *D. melanogaster*  

Figure 35a: Daughter’s survival curve of young, middle aged and old males in three rearing temperatures using cross sectional study of *D. melanogaster*  

Figure 35b: Daughter’s survival curve of young, middle aged and old males in three rearing temperatures using longitudinal study of *D. melanogaster*