REFERENCES


26. HOSSAIN A. SYED ET. AL (1993) PRESENTED A NECESSARY AND SUFFICIENT CONDITION FOR THE LIKELIHOOD ESTIMATES TO BE
FINITE, POSITIVE AND UNIQUE AND SUGGESTED A MODIFICATION TO GOEL AND OKUMOTO MODEL.


LENGTH BIASED VERSION OF EXPONENTIAL MODEL, STATISTICAL METHODS, 5(1), 63 - 78.


38. Kolesar 1993


INTERNATIONAL SYMPOSIUM ON SOFTWARE RELIABILITY ENGINEERING, IEEE COMPUTER SOCIETY PRESS, PP. 172-181.


60. MURALI MOHAN, S. (2013), “EXPONENTIAL SOFTWARE RELIABILITY GROWTH MODEL”, PH.D THESIS, ACHARYA NAGARJUNA UNIVERSITY.


85. SEVIL BACANLI AND DUYGU ICEN. (2013). “SEQUENTIAL PROBABILITY RATIO TEST OF CORRELATION COEFFICIENT USING
86. SHAHEEN, (2013), “HALF LOGISTIC SOFTWARE RELIABILITY: TWO STEP APPROACH”, PH.D THESIS, ACHARYA NAGARJUNA UNIVERSITY.


VAGUE DATA,” AUSTRIAN JOURNAL OF STATISTICS, VOL. 34, NO. 1, PP. 25-38.


106. VAUGHAN, D. C. AND TIKU, M. L. (2000): ESTIMATION AND HYPOTHESIS TESTING FOR A NON NORMAL BIVARIATE DISTRIBUTION AND APPLICATIONS. INVITED PAPER, IN MATHEMATICAL AND COMPUTER MODELLING 32 (1\2), SPECIAL ISSUE ON STOCHASTIC MODELS IN MATHEMATICAL BIOLOGY (EDS. J. GANI, G. HAYNATZKI, V. HAYNATZKI AND S. RACHEV), 53 67.


115. YASSHI MASUDA ET. AL (1989) INTRODUCED AN OBJECTIVE FUNCTION WHICH INCORPORATES AVERAGE COST, TIME DEPENDENT VALUE OF THE SOFTWARE SYSTEM AND THE CUMULATIVE RUNNING COST.
