LIST OF FIGURES

Fig 1.1 Schematic representation of regions of stability of coordination polyhedra with coordination number CN according to the ratio r_c/r_a of the radii of the cation and anion

Fig 1.2 Two-dimensional schematic representation of the structure of (a) hypothetical crystalline compound A_2O_3 (b) The glassy form of the same compound

Fig 1.3 Two dimensional schematic representation of a disordered network

Fig 1.4 Schematic diagram of sol-gel processing of materials

Fig 1.5 Schematic diagram showing gradual evolution of rigid glassy network by sol-gel processing.

Fig 2.1 The net work formation in modified silica glass

Fig 2.2 Luminescence channels of Eu$^{3+}$ free ions

Fig 2.3 The modification of energy levels with particle size in relation to exciton-Bohr radius

Fig 2.4 The continuous absorption spectrum of a bulk semiconductor and the discrete absorption spectrum of a Quantum Dot

Fig 2.5 Stages of preparation of Sol-Gel silica samples

Fig 2.6 A typical photograph of the sample

Fig 2.7 FT-IR spectrum of ZnSe/Eu$^{3+}$ doped samples annealed at different temperatures

Fig 2.8 The typical TGA curves of CdTe/Sm$^{3+}$ doped Sol-Gel silica samples

Fig 2.9 The typical DTA curves of ZnSe/Eu$^{3+}$ doped Sol-Gel silica samples

Fig 2.10 TEM image of ZnSe nanocrystals

Fig 2.11 HR-TEM image of ZnSe nanocrystals.

Fig 2.12 The absorption spectra of ZnSe doped Sol-Gel silica samples

Fig 2.13 The $(\alpha)^2$ vs hv graph of ZnSe doped Sol-Gel silica samples

Fig 2.14 Absorption spectra of ZnSe/Eu$^{3+}$ sample and Eu$^{3+}$ alone sample obtained at room temperature

Fig 2.15 Excitation spectrum of Eu$^{3+}$/ZnSe samples heated to 500$^\circ$C (λ_{ex}=614nm) taken at room temperature

Fig 2.16 Emission spectra of samples heated to 500$^\circ$C (λ_{ex} from 320 nm to 380nm)

Fig 2.17 Emission spectrum of sample heated to 500$^\circ$C. (λ_{ex} =393nm) taken at room temperature
Fig 2.18 Comparison of emission spectra of samples with and without ZnSe heated to 500 °C (\(\lambda_{ex} = 393\) nm) taken at room temperature

Fig 2.19 Luminescence obtained for samples in the gel state

Fig 2.20 Luminescence obtained for sample on conversion to glass

Fig 3.1 Stages of preparation CdTe/Sm\(^{3+}\) doped Sol-Gel silica samples

Fig 3.2 XRD spectra of CdTe/Sm\(^{3+}\) doped Sol-Gel silica samples at 50,500 and 800 °C

Fig 3.3 The HR-TEM image of CdTe micro crystals surrounded by oxygenated CdTe phase(CdTeO\(_3\))

Fig 3.4 Schematic showing the formation of CdTeO\(_3\) in addition to CdTe

Fig 3.5 The FT-IR spectra of CdTe/Sm\(^{3+}\) sol-gel silica glass samples air annealed at 50, 200, 500, 800 °C.

Fig 3.6 The typical TGA curve of CdTe/Sm\(^{3+}\) doped silica gels

Fig 3.7 The typical DTA curve of CdTe/Sm\(^{3+}\) doped silica gels

Fig 3.8 Absorption spectrum of Sm\(^{3+}\) doped glass

Fig 3.9 Absorption spectrum of Sm\(^{3+}\) doped glasses at room temperature and at 500 °C

Fig 3.10 Absorption spectrum of Sm\(^{3+}\) and CdTe/Sm\(^{3+}\) doped glasses

Fig 3.11 Emission spectra of Sm\(^{3+}\) doped glass at 500 and 800 °C

Fig 3.12 Energy level, excitation and emission path ways of Sm\(^{3+}\)

Fig 4.1 The microwave cavity with field distributions

Fig 4.2 Transmission type S-band rectangular cavity resonator

Fig 4.3 HP 8714 ET network analyzer with an interfacing computer

Fig 4.4 The variation of real part of complex permittivity (\(\varepsilon_r\)) with frequency at four different temperatures for Sm\(^{3+}\):SiO\(_2\)

Fig 4.5 The variation of real part of complex permittivity (\(\varepsilon_r\)) with frequency at four different temperatures for CdTe/Sm\(^{3+}\):SiO\(_2\)

Fig 4.6 The variation of imaginary part of complex permittivity (\(\varepsilon_r\)) with frequency at four different temperatures for Sm\(^{3+}\):SiO\(_2\)

Fig 4.7 The variation of imaginary part of complex permittivity (\(\varepsilon_r\)) with frequency at four different temperatures for CdTe/Sm\(^{3+}\):SiO\(_2\)

Fig 4.8 The variation of conductivity (\(\sigma\)) with frequency at four different temperatures for Sm\(^{3+}\):SiO\(_2\)
Fig 4.9 The variation of conductivity (σ) with frequency at four different temperatures for CdTe/Sm$^{3+}$:SiO$_2$

Fig 4.10 The variation of real part of complex permittivity (ε_r') with frequency at four different temperatures for Eu$^{3+}$:SiO$_2$

Fig 4.11 The variation of real part of complex permittivity (ε_r') with frequency at 4 different temperatures for ZnSe/Eu$^{3+}$:SiO$_2$

Fig 4.12 The variation of imaginary part of complex permittivity (ε_r'') with frequency at four different temperatures for Eu$^{3+}$:SiO$_2$

Fig 4.13 The variation of imaginary part of complex permittivity (ε_r'') with frequency at four different temperatures for ZnSe/Eu$^{3+}$:SiO$_2$

Fig 4.14 The variation of conductivity (σ) with frequency at four different temperatures for Eu$^{3+}$:SiO$_2$

Fig 4.15 The variation of conductivity (σ) with frequency at four different temperatures for ZnSe/Eu$^{3+}$:SiO$_2$

Fig 4.16 The top view of the impressions of Vickers indenter

Fig 4.17 The actual Vickers Diamond pyramid indenter in the form of a squared pyramid with an angle of 136° between faces

Fig 4.18 The variation of hardness of CdTe/Sm$^{3+}$ sample with annealing temperature for a given set of loads

Fig 4.19 The variation of hardness of Sm$^{3+}$ sample with annealing temperature for a given set of loads

Fig 4.20 Variation of hardness of ZnSe/Eu$^{3+}$ sample with annealing temperature for a given set of loads

Fig 4.21 Variation of hardness of Eu$^{3+}$ sample with annealing temperature for a given set of loads

Fig 5.1 Schematic diagram of multiphonon relaxation

Fig 5.2 Excitation spectrum recorded in the wavelength range 350-600nm

Fig 5.3 Partial energy level diagram of Eu$^{3+}$ ion showing phonon sidebands

Fig 5.4 The Phonon sidebands associated with the $^7F_0 \rightarrow ^5D_2$ (ZPL) transition of Eu$^{3+}$ alone and ZnSe/ Eu$^{3+}$ doped sol-gel glasses

Fig 5.5 The Raman spectrum of the sample containing ZnSe nanocrystallites

Fig 5.6 The linear and non-linear variations of polarisation with electric field

Fig 5.7 Schematic of the Z-scan experimental set up

Fig 5.8: Normalized transmittance as a function of the distance for an input energy of 30 μJ
Fig 5.9 Normalized transmittance as a function of the distance for an input energy of 40 μJ

Fig 5.10 Normalized transmittance as a function of the distance for an input energy of 50 μJ

Fig 5.11 Normalized transmittance as a function of the distance for an input energy of 60 μJ

Fig 5.13 log q vs log I plot for four input energies of 30, 40, 50, 60 μJ