LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig. No</th>
<th>Title</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Free energy change of nucleus as a function of radius</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Possible lattice sites for the attachment of absorbed atom A -</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>terrace B - ledge C - kink</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>Development of a spiral and the end of screw dislocation</td>
<td>15</td>
</tr>
<tr>
<td>2.1</td>
<td>Crystallization by chemical reaction method</td>
<td>38</td>
</tr>
<tr>
<td>3.1</td>
<td>Bruker AXS D8 Advance X-ray Diffractometer</td>
<td>54</td>
</tr>
<tr>
<td>3.2</td>
<td>Thermo Nicolate Avator 370 spectrometer</td>
<td>57</td>
</tr>
<tr>
<td>3.3</td>
<td>Perkin Elmer, Diamond TG/DTA</td>
<td>59</td>
</tr>
<tr>
<td>3.4</td>
<td>Mettler Toledo DSC 822</td>
<td>61</td>
</tr>
<tr>
<td>3.5</td>
<td>Thermo Electron IRIS Intrepid 11 XSP DUO –ICP-AES</td>
<td>61</td>
</tr>
<tr>
<td>3.6</td>
<td>HP4192A Impedance Analyzer</td>
<td>64</td>
</tr>
<tr>
<td>4.1</td>
<td>Specific gravity of SMS vs. practical volume of water</td>
<td>74</td>
</tr>
<tr>
<td>4.2</td>
<td>Gelation period vs. pH of the medium</td>
<td>77</td>
</tr>
<tr>
<td>4.3</td>
<td>Yttrium Oxalate tetragonal crystals heaped on a glass plate in red background (left). Crystallization of the Yttrium Oxalate crystals in the dissolution area – magnified (right).</td>
<td>81</td>
</tr>
<tr>
<td>4.4</td>
<td>A well faceted Yttrium Oxalate crystal (x20)</td>
<td>81</td>
</tr>
<tr>
<td>4.5</td>
<td>An enlarged Yttrium Oxalate crystal with its growth layers (x50).</td>
<td>82</td>
</tr>
<tr>
<td>4.6</td>
<td>Microscopic view of Yttrium Oxalate crystals (*20 magnification) Single, multi nucleated, branched, additional growth can be observed.</td>
<td>82</td>
</tr>
<tr>
<td>4.7</td>
<td>Growth system of Yttrium mixed Oxalate crystals</td>
<td>86</td>
</tr>
<tr>
<td>4.8</td>
<td>Growth system of NdBaCuOx, PrBaCuOx, GdBaCuOx crystals</td>
<td>86</td>
</tr>
<tr>
<td>4.9 (a)</td>
<td>Number of crystals vs. gel density of Yttrium series</td>
<td>88</td>
</tr>
<tr>
<td>4.9 (b)</td>
<td>Number of crystals vs. gel density of RBaCuOx</td>
<td>88</td>
</tr>
<tr>
<td>4.10 (a)</td>
<td>Number of crystals vs. Ageing of gel of Yttrium series</td>
<td>89</td>
</tr>
<tr>
<td>4.10 (b)</td>
<td>Number of crystals vs. ageing of gel of RBaCuOx</td>
<td>89</td>
</tr>
<tr>
<td>4.11</td>
<td>Variation of pH of the gel with the number of crystals</td>
<td>91</td>
</tr>
</tbody>
</table>
4.12 Variation of concentration of outer electrolyte with number of crystals

5.1 X-ray Powder diffractogram of $Y_2(C_2O_4)_3 \cdot 14H_2O$ 101
5.2 X-ray Powder diffractogram of $Y_2Ba(C_2O_4)_4 \cdot 8H_2O$ crystals 102
5.3 X-ray Powder diffractogram of $Y_2BaCu(C_2O_4)_4 \cdot 8H_2O$ crystals 103
5.4 X-ray Powder diffractogram of $Pr_2BaCu(C_2O_4)_4 \cdot 9H_2O$ crystals 104
5.5 X-ray Powder diffractogram of $Nd_2BaCu(C_2O_4)_5 \cdot 12H_2O$ crystals 105
5.6 X-ray Powder diffractogram of $Gd_2BaCu(C_2O_4)_5 \cdot 13H_2O$ crystals 106
5.7 X-ray Powder diffractogram of $Dy_2BaCu(C_2O_4)_5 \cdot 12H_2O$ crystals 107
5.8 IR absorption spectrum of YO_x crystals 108
5.9 IR absorption spectrum of $YBaO_x$ crystals 111
5.10 IR absorption spectrum of $YCuO_x$ crystals 112
5.11 IR absorption spectrum of $YBaCuO_x$ crystals 113
5.12 IR absorption spectrum of $PrBaCuO_x$ crystals 114
5.13 IR absorption spectrum of $NdBaCuO_x$ crystals 115
5.14 IR absorption spectrum of $GdBaCuO_x$ crystals 116
5.15 IR absorption spectrum of $DyBaCuO_x$ crystal 117
5.16 EDAX pattern of $NdBaCuO_x$ 120
5.17 EDAX pattern of $YBaCuO_x$ 121
5.18 TG /DTA of YO_x crystals 122
5.19 TG /DTA of $YBaO_x$ crystals 124
5.20 TG /DTA of $YCuO_x$ crystals 126
5.21 TG /DTA of $YBaCuO_x$ crystals 128
5.22 TG /DTA of $PrBaCuO_x$ crystals 130
5.23 TG /DTA of $NdBaCuO_x$ crystals 132
5.24 TG /DTA of $GdBaCuO_x$ crystals 135
5.25 TG /DTA of $DyBaCuO_x$ crystals 137
5.26 DSC analysis of YO_x crystals 140
5.27 DSC analysis of $YBaO_x$ crystals 141
5.28 DSC analysis of $YCuO_x$ crystals 142
5.29 DSC analysis of $YBaCuO_x$ crystals 143
5.30 DSC analysis of PrBaCuOx crystals
5.31 DSC analysis of NdBaCuOx crystals
5.32 DSC analysis of GdBaCuOx crystals
5.33 DSC analysis of DyBaCuOx crystals

6.1 Vickers Hardness Test Method

6.2 Load P vs. H, graph for YOx, YBaOx, YCuOx and YBaCuOx crystals
6.3 Load P versus H, graph for PrBaCuOx, NdBaCuOx, GdBaCuOx and DyBaCuOx
6.4 Plot of log P vs. log d for YOx, YBaOx, YCuOx and YBaCuOx crystals
6.5 Plot of log P vs. log d for PrBaCuOx, NdBaCuOx, GdBaCuOx and DyBaCuOx

7.1 Equivalent circuit diagram (a) Capacitive cell (b) Charging and loss current (c) Loss tangent for typical dielectric
7.2 Frequency vs. ε_r of YOx crystals
7.3 Frequency vs. loss tangent of YOx crystals
7.4 Frequency vs. ε_r of YBaOx crystals
7.5 Frequency vs. loss tangent of YBaOx crystals
7.6 Frequency vs. ε_r of YCuOx crystals
7.7 Frequency vs. loss tangent of YCuOx crystals
7.8 Frequency vs. ε_r of YBaCuOx crystals
7.9 Frequency vs. loss tangent of YBaCuOx crystals
7.10 Frequency vs. ε_r of PrBaCuOx crystals
7.11 Frequency vs. loss tangent of PrBaCuOx crystals
7.12 Frequency vs. ε_r of NdBaCuOx crystals
7.13 Frequency vs. loss tangent of NdBaCuOx crystals
7.14 Frequency vs. ε_r of GdBaCuOx crystals
7.15 Frequency vs. loss tangent of GdBaCuOx crystals
7.16 Frequency vs. ε_r of DyBaCuOx crystals
7.17 Frequency vs. loss tangent of DyBaCuOx crystals
7.18 Variation of conductivity with log frequency at different temperatures of YOx crystals
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.19</td>
<td>Variation of conductivity with log frequency at different temperatures of YBaOx crystals</td>
</tr>
<tr>
<td>7.20</td>
<td>Variation of conductivity with log frequency at different temperatures of YCuOx crystals</td>
</tr>
<tr>
<td>7.21</td>
<td>Variation of conductivity with log frequency at different temperatures of YBaCuOx crystals</td>
</tr>
<tr>
<td>7.22</td>
<td>Variation of conductivity with log frequency at different temperatures of PrBaCuOx crystals</td>
</tr>
<tr>
<td>7.23</td>
<td>Variation of conductivity with log frequency at different temperatures of NdBaCuOx crystals</td>
</tr>
<tr>
<td>7.24</td>
<td>Variation of conductivity with log frequency at different temperatures of GdBaCuOx crystals</td>
</tr>
<tr>
<td>7.25</td>
<td>Variation of conductivity with log frequency at different temperatures of DyBaCuOx crystals</td>
</tr>
<tr>
<td>7.26</td>
<td>Variation of ln σ (micro siemens / m) as a function of inverse of absolute temperature (1/T) of Rare Earth Oxalate Crystals at 10 KHz.</td>
</tr>
<tr>
<td>7.27</td>
<td>Field dependence of photo and dark conductivity of NdBaCuOx crystals</td>
</tr>
<tr>
<td></td>
<td>Field dependence of photo and dark conductivity of GdBaCuOx crystals</td>
</tr>
<tr>
<td>7.28</td>
<td>Field dependence of photo and dark conductivity of DyBaCuOx crystals</td>
</tr>
<tr>
<td>7.29</td>
<td>Field dependence of photo and dark conductivity of DyBaCuOx crystals</td>
</tr>
<tr>
<td>7.30</td>
<td>Field dependence of photo and dark conductivity of YBaOx crystals</td>
</tr>
<tr>
<td>7.31</td>
<td>Field dependence of photo and dark conductivity of YCuOx crystals</td>
</tr>
<tr>
<td>8.1</td>
<td>Microwave experimental set-up</td>
</tr>
<tr>
<td>8.2</td>
<td>Schematic diagram of the cavity resonator</td>
</tr>
<tr>
<td>8.3</td>
<td>Frequency vs. real part of complex permittivity</td>
</tr>
<tr>
<td>8.4</td>
<td>Frequency vs. imaginary part of complex permittivity</td>
</tr>
<tr>
<td>8.5</td>
<td>Frequency vs. Conductivity</td>
</tr>
<tr>
<td>8.6</td>
<td>Frequency vs. Loss tangent</td>
</tr>
</tbody>
</table>