CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>BONAFIDE CERTIFICATE</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td>xxi</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Water</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Groundwater quality</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Water pollution</td>
<td>1</td>
</tr>
<tr>
<td>1.4 Sources of pollution</td>
<td>2</td>
</tr>
<tr>
<td>1.5 Fluoride</td>
<td>2</td>
</tr>
<tr>
<td>1.6 Fluoride in groundwater</td>
<td>3</td>
</tr>
<tr>
<td>1.7 Health impacts of fluoride</td>
<td>3</td>
</tr>
<tr>
<td>1.8 Metabolism of fluoride</td>
<td>4</td>
</tr>
<tr>
<td>1.9 Technologies for fluoride removal</td>
<td>5</td>
</tr>
<tr>
<td>1.10 Objectives</td>
<td>5</td>
</tr>
<tr>
<td>1.11 Work Plan</td>
<td>6</td>
</tr>
<tr>
<td>1.12 The importance of the project area</td>
<td>6</td>
</tr>
<tr>
<td>2. REVIEW OF LITERATURE</td>
<td>8</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Biggest challenges of 21st century</td>
<td>8</td>
</tr>
<tr>
<td>2.3 Defluoridation techniques</td>
<td>9</td>
</tr>
<tr>
<td>2.3.1 Adsorption</td>
<td>9</td>
</tr>
</tbody>
</table>
2.3.2. Adsorption isotherm

2.4 Adsorbents for defluoridation

2.4.1. Alumina and aluminum based adsorbents

2.4.1.1. Alumina

2.4.1.2. Alumina plus manganese dioxide/magnesium oxide

2.4.1.3. Alumina plus iron oxide

2.4.1.4. Alumina plus calcium minerals

2.4.1.5. Aluminium hydroxide coated rice husk ash

2.4.2. Calcium based sorbents

2.4.3. Iron based sorbents

2.4.3.1. Schwermannite

2.4.3.2. Iron-impregnated granular ceramics

2.4.4. Metal oxides/hydroxides/oxyhydroxides, mixed metal oxides, metal impregnated oxides as sorbents

2.4.4.1. Bauxite

2.4.4.2. Red mud

2.4.4.3. Bimetal mixed oxide

2.4.4.4. Trimetal mixed oxide

2.4.4.5. Ternary mixed oxide

2.4.5. Carbon based sorbents

2.4.5.1. Alumina-impregnated carbon nanotubes

2.4.6. Natural materials as sorbents

2.4.6.1. Lateritic ores

2.4.6.2. Clays and soils

2.4.6.3. Zeolites

2.4.7. Biosorbents

2.4.7.1. Algal biomass

2.4.7.2. Bone char

2.4.7.3. Neodymium-modified chitosan

2.4.7.4. Plant biomass
2.4.8. Layered double hydroxides/hydrotalcite like compounds/apatite and hydroxyapatite as sorbents
2.4.8.1. Polymeric composites
2.4.8.2. Hydroxyapatite
2.4.9. Building materials as sorbents
2.4.9.1. Plaster of paris
2.4.9.2. Fly ash
2.4.9.3. Hydrated cement
2.4.10. Agricultural wastes as sorbents
2.4.10.1. Neem and Kikar leaves
2.4.10.2. *Moringa indica*
2.4.10.3. Tamarind seed
2.4.10.4. Corn cobs
2.4.10.5. Gulmohar fruit shell
2.4.10.6. Plant Waste as an adsorbent
2.4.11. Miscellaneous adsorbents

3. FLUORIDE LEVELS IN GROUNDWATER SOURCES OF
VIRUDHUNAGAR DISTRICT, TAMIL NADU, INDIA

3.1. Introduction
3.2. Location and Hydrogeology
3.3. Soil
3.4. Climate and rainfall
3.5. Site description
3.5.1. Sivakasi
3.5.2. Virudhunagar
3.5.3. Aruppukottai
3.6. Water sampling
3.6.1. Sivakasi habitations
3.6.2. Virudhunagar habitations
3.6.3. Aruppukottai habitations
3.7. Sample collection 46
3.8. Water quality parameters 46
3.9. Determination of Fluoride 46
 3.9.1. Reagents required 46
3.10. Prevalence of dental fluorosis analysis 47
3.11. Results and discussion 47
 3.11.1. Prevalence of dental fluorosis in Virudhunagar district 53
 3.11.2. Probable sources of fluoride 57
 3.11.2.1. Weathering of rocks 57
 3.11.2.2. Anthropogenic activities 58
 3.11.3 Groundwater management 59
3.12. Conclusion 59

4. SCREENING OF BIOSORBENTS FOR FLUORIDE REMOVAL 60
4.1. Agro based adsorbents for biosorption 60
4.2. Screening of adsorbents for fluoride removal 61
4.3. Wattle humus 61
 4.3.1. Geographical location 61
 4.3.2. Description of the Wattle tree 61
4.3.3. Origin 62
4.3.4. Bark and leaflets 62
4.3.5. Flower and seed 62
4.3.6. Preparation of carbon by thermal activation process 62
4.4. Properties of the Carbonized Wattle Humus 63
 4.4.1. pH and conductivity 63
 4.4.2. Moisture content 63
 4.4.3. Apparent density 64
 4.4.4. Specific gravity 64
 4.4.5. Porosity 64
 4.4.6. Decolorizing power 65
 4.4.7. Matter soluble in water 65
4.4.8. Matter soluble in acid 66
4.4.9. Ion exchange capacity 66
4.4.10. Iodine number 67
4.4.11. Ash content 67
4.4.12. Sodium and potassium content 67
4.4.13. Surface area - Brunauer-Emmett-Teller (BET) 68

4.5. RESULTS AND DISCUSSION 68
4.5.1. Humus 69
4.5.1.1. pH and conductivity 75
4.5.1.2. Moisture content 75
4.5.1.3. Apparent density 75
4.5.1.4. Porosity 76
4.5.1.5. Decolorizing power 76
4.5.1.6. Ion exchange capacity 76
4.5.1.7. Iodine number 77
4.5.1.8. Ash content 77
4.5.1.9. Sodium, potassium content and water, acid solubility 78
4.5.1.10. Surface area 78

4.6. Conclusion 82

5. OPTIMIZATION OF FLUORIDE REMOVAL EFFICIENCY USING CARBONIZED WATTLE HUMUS BY BATCH AND COLUMN MODE PROCESSES 83
5.1. Introduction 83
5.2. Materials and Methods 83
5.2.1. Determination of fluoride 83
5.3. Adsorption process 83
5.3.1. Batch mode studies 83
5.3.1.1. Contact time 84
5.3.1.2. Adsorbent dosage 84
5.3.1.3. Mesh size 84
5.3.1.4. pH 85
5.3.1.5. Interfering co-ions 85
5.3.2. Adsorption modeling 85
5.3.3. Desorption studies 86
5.3.4. Column mode studies 86
5.3.4.1. Flow rate 86
5.3.4.2. Bed volume 87
5.3.4.3. Adsorbate concentration 87
5.3.4.4. Bed-Depth-Service-Time (BDST) model 87

5.4. Results and Discussion 88
5.4.1. Effect of contact time with fluoride concentration 88
5.4.2. Effect of Adsorbent dosage 91
5.4.3. Effect of mesh size 92
5.4.4. Effect of pH 94
5.4.5. Effect of co-ion 96
5.4.6. Adsorption isotherm 97
5.4.7. Adsorption kinetics 108
5.4.8. Desorption 111
5.4.9. Column mode studies 112
5.4.9.1. Effect of flow rate 113
5.4.9.2. Effect of bed height 113
5.4.9.3. Effect of fluoride concentration 114
5.4.9.4. Bed-depth-service-time (BDST) 123

5.5. Conclusion 131

6. CHARACTERIZATION OF THE CARBONIZED WATTLE HUMUS 132
6.1. Introduction 132
6.2. Thermal analysis 132
6.2.1. Thermogravimetric Analysis (TGA) 133
6.2.2. Differential Scanning Calorimeter (DSC) 133
6.3. X-Ray Diffraction (XRD) 134
6.4. Scanning Electron Microscope (SEM) 134
6.5. Energy Dispersive X-ray analysis (EDAX) 135
6.6. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-OES) 135
6.7. Fourier Transform Infrared Spectroscopy (FTIR) 136
6.8. X-ray Photo-emission Spectrometry (XPS) 136
6.9. UV-visible spectrophotometer 136
6.10. RESULTS AND DISCUSSION 137
 6.10.1. Thermal analysis 137
 6.10.1.1. Differential Scanning Calorimeter (DSC) and Thermogravimetric Analysis (TGA) 137
 6.10.1.2. X-Ray Diffraction (XRD) 139
 6.10.1.3. Scanning Electron Microscope (SEM) 141
 6.10.1.4. Energy Dispersive X-Ray analysis (EDAX) 142
 6.10.1.5. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-OES) 143
 6.10.1.6. Fourier Transform Infrared Spectroscopy (FTIR) 144
 6.10.1.7. X-Ray Photo-emission Spectrophotometry (XPS) 145
6.11. Conclusion 148

7. DESIGN AND FABRICATION OF HOUSEHOLD BIOFILTER FOR FLUORIDE REMOVAL 150
7.1. Introduction 150
7.2. Material and methods 150
 7.2.1. Physico-chemical analysis of water samples 151
7.3. Results and discussion 152
 7.3.1. Household biofilter (380 L capacity) 152
 7.3.2. Cost factor analysis 157
7.4. Conclusion 157

8. SUMMARY 158
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>REFERENCES</td>
<td>161</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>191</td>
</tr>
<tr>
<td>CURRICULUM VITAE</td>
<td>192</td>
</tr>
</tbody>
</table>