CONTENTS

<table>
<thead>
<tr>
<th>LIST OF TABLES</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

2. REVIEW OF LITERATURE

2.1. Stand density

2.2. Optimal stand density

2.3. Growth models
 2.3.1. Empirical models
 2.3.2. Process-based models
 2.3.3. The U-approach in growth modelling
 2.3.4. Resolution level of growth models
 2.3.5. Allometric relations

2.4. Intrinsic units in growth modelling

2.5. Fractal geometry and its application in growth modelling

2.6. Past research on thinning and rotation age in teak

2.7. Environmental effects of growing teak

3. MATERIALS AND METHODS

3.1. Growth model
 3.1.1. Model structure
 3.1.2. Data used for estimating the growth model
 3.1.3. Estimation of parameters of growth model

3.2. Intrinsic units for measuring growth
 3.2.1. Estimation of parameter c of Richards function at stump level
 3.2.2. Estimation of parameter c of Richards function at breast-height level

3.3. Fractal dimension

3.4. Optimum thinning schedule and rotation age
 3.4.1. Estimation of price-size gradient for teak trees
 3.4.2. Estimation of input cost vs. size relationship for teak trees