PETROFABRIC DIAGRAMS
Fig. 26 150 poles to mica cleavages of quartzite, Pensamudra.
Contours 30-20-10-5-2%.

Fig. 27 300 quartz axes of quartzite, Pensamudra.
Contours 9-8-5-3-1-1/2%.

Fig. 28 200 poles to mica cleavages of quartzite, Pensamudra.
Contours 17-16-12-10-8-2-1/2%.

Fig. 29 300 quartz axes of quartzite, Pensamudra.
Contours 6-4-2-1/2%.

Fig. 30 300 poles to mica cleavages of quartzite, Pensamudra.
Contours 19-16-10-7-4-1/2%.

Fig. 31 300 quartz axes of quartzite, Pensamudra.
Contours 7-5-3-1-1/2%.

Fig. 32 300 poles to mica cleavages of quartzite, Pensamudra.
Contours 18-16-10-4-1-1/2%.

Fig. 33 300 quartz axes of quartzite, Pensamudra.
Contours 7.5-6-4-2-1-1/2%.
Fig. 34 200 poles to mica cleavages of mica-garnet-quartz schist (quartzite), Pensamendra. Contours 12.5-7-3-1/4.

Fig. 35 300 quartz axes of mica garnet quartz schist (quartzite) Pensamendra. Contours 5.7-4-3-1/4.

Fig. 36 300 poles to mica cleavages of granite gneiss, Pensamandra. Contours 6-5-3-2-1/4.

Fig. 37 300 quartz axes of granite gneiss, Pensamandra. Contours 4-3-2-1-1/4.

Fig. 38 200 poles to mica cleavages of banded gneiss, Pensamandra. Contours 5-4-3-2-1-1/4.

Fig. 39 300 quartz axes of banded gneiss, Pensamandra. Contours 5.7-4-3-2-1-1/4.

Fig. 40 300 poles to mica cleavages of garnetiferous gneiss, Pensamandra. Contours 10-9-7-5-3-1-1/4.

Fig. 41 100 quartz (bigger) axes of garnetiferous gneiss, Pensamandra. Contours 6-7-4-2-1/4.
Fig. 42 200 poles to mica cleavages of garnetiferous gneiss, Pensamudra. Contours 6.5-0-4-2-1/2.

Fig. 43 300 quartz axes of mica gneiss, Pensamudra. Contours 12.5-0-6-3-1-1/2.

Fig. 44 200 poles to mica cleavages of garnetiferous gneiss, Pensamudra. Contours 13-10-6-4-2-1/2.

Fig. 45 300 quartz axes of garnetiferous gneiss, Pensamudra. Contours 9.5-8-6-4-2-1/2.

Fig. 46 150 poles to mica cleavages of augen gneiss, Pensamudra. Contours 25-30-10-5-1/2.

Fig. 47 250 quartz axes of augen gneiss, Pensamudra. Contours 8.5-7-5-3-1/2.

Fig. 48 220 poles to mica cleavages of augen gneiss, Pensamudra. Contours 21-18-12-6-3-1/2.

Fig. 49 250 quartz axes of augen gneiss, Pensamudra. Contours 9-8-6-2-1/2.
Fig. 50 150 poles to mica cleavages of quartzite, Goblihalli. Contours 17-15-0-0-3-1%

Fig. 51 250 quartz axes of quartzite, Goblihalli. Contours 17-15-0-0-6-3-0-52%

Fig. 52 200 poles to mica cleavages of grey gneiss, Goblihalli. Contours 9-8-5-4-3-2-1%

Fig. 53 200 quartz axes of grey gneiss, Goblihalli. Contours 4-3-2-1%

Fig. 54 300 poles to mica cleavages of grey gneiss, Goblihalli. Contours 6-5-4-2-1-1%

Fig. 55 300 quartz axes of grey gneiss, Goblihalli. Contours 5-2-4-2-1-1%

Fig. 56 150 poles to mica cleavages of augen gneiss, Dyrapur. Contours 18-7-5-3-2-1%

Fig. 57 200 quartz axes of augen gneiss, Dyrapur. Contours 5-4-3-2-1%
Fig. 58 100 poles to mica cleavages of granitic gneiss, Byrapur. Contours 12-10-8-6-4-2-1-1/2%

Fig. 59 300 quartz axes of granitic gneiss, Byrapur. Contours 5.5-4-2-1-1/2%

Fig. 60 280 quartz (bigger) axes of pencil gneiss, Byrapur. Contours 5.5-5-3-2-1-0.25%

Fig. 61 200 poles to mica cleavages of pencil gneiss, Byrapur. Contours 7-6-4-2-1/2%

Fig. 62 200 quartz axes of pencil gneiss, Byrapur. Selective. Contours 6.5-5-3-2-1%

Fig. 63 85 poles to mica cleavages of pencil gneiss, Byrapur. Contours 12.5-10-6-4-2-1%

Fig. 64 Figure 60 rotated on B

Fig. 65 300 quartz axes of pencil gneiss, Byrapur. Contours 3-2.5-1-1/2%
Fig. 66 200 quartz axes of amphibolite, Byrapur. Contours 5.5–4–2–1–0.25%

Fig. 67 300 quartz (bigger) axes of amphibolite, Pensamudra. Contours 3.9–3–1–0.25%

Fig. 68 270 quartz axes of epidote, Byrapur. Contours 5.5–5–3–2–1–0.25%

Fig. 69 150 quartz (bigger) axes of augen gneiss, Tagadur. Contours 7.5–6–4–3–1–0.25%

Fig. 70 150 poles of hornblende cleavages of ecritite. Contours 10–8–4–2–1–0.25%

Fig. 71 75 cleavage plane intersections of hornblende of ecritite, Byrapur. Contours 31–30–20–15–10–5%

Fig. 72 300 poles to mica cleavages of augen gneiss, Tagadur. Contours 5–4–3–1–0.25%

Fig. 73 284 quartz (bigger) axes of augen gneiss, Tagadur. Contours 5.5–5–3–2–1–0.25%
Fig. 74 210 poles to mica cleavages of augen gneiss, Tagadur. Contours 4.5–3.5–1.5–0.25%

Fig. 75 300 quartz axes of augen gneiss, Tagadur. Selective. Contours 6–5–4–2–1–1/2%

Fig. 76 300 poles to mica cleavages of grey gneiss, Tagadur. Contours 5–4–2–1–1/2%

Fig. 77 300 quartz axes of grey gneiss, Tagadur. Selective. Contours 3.6–2–1–1/2%

Fig. 78 200 poles to mica cleavage of augen gneiss, Tagadur. Contours 21–20–12–8–4–1/2%

Fig. 79 200 quartz axes of augen gneiss, Tagadur. Contours 7.5–6–2–1/2%

Fig. 80 120 poles to mica cleavages of grey gneiss, Tagadur. Contours 6–5–3–2–0.75%

Fig. 81 300 quartz axes of grey gneiss, Tagadur. Contours 5–4–2–1–1/2%
Fig. 82 300 quartz axes of augen gneiss, Tagadur. Selective. Contours 5.5-4-2-1-\(\frac{1}{4}\)%

Fig. 83 200 quartz axes of sheet structure in gneiss, Tagadur. Selective. Contours 8-6-2-\(\frac{1}{4}\)%

Fig. 84 250 poles to mica cleavages of granite gneiss, Tagadur. Contours 5-4-3-2-1-0.25%

Fig. 85 200 quartz axes of granite gneiss, Tagadur. Selective. Contours 6.5-5-3-\(\frac{1}{4}\)%

Fig. 86 300 poles to mica cleavages of augen gneiss, Tagadur. Contours 7-6-4-3-2-1-\(\frac{1}{4}\)%

Fig. 87 400 quartz axes of augen gneiss, Tagadur. Contours 4.2-4-2-1-0.25%

Fig. 88 150 poles to mica cleavages of granitic gneiss, Tagadur. Contours 10-8-6-4-2-1-\(\frac{1}{2}\)%

Fig. 89 300 quartz axes of granitic gneiss, Tagadur. Contours 9-8-6-5-3-2-1-\(\frac{1}{2}\)%
Fig.90 200 poles to mica cleavages of grey gneiss, Tagadur. Contours 15-12-6-3-1\%
Fig.91 300 quartz axes of grey gneiss, Tagadur. Selective. Contours 4-3-2-1\%
Fig.92 300 quartz axes of light grey gneiss, Tagadur. Contours 4-3-2-1\%
Fig.93 200 quartz axes of amphibolite, Tagadur. Contours 5-4-2-1\%
Fig.94 300 quartz axes of quartzite, Tagadur. Contours 9-8-4-2-1\%
Fig.95 200 quartz axes of quartzite, Tagadur. Contours 10-8-4-2-1\%
Fig.96 200 quartz axes of amphibolite, Tagadur. Contours 4-3-1-1\%
Fig.97 200 quartz axes of amphibolite, Tagadur. Contours 4.5-3-1-1\%
Fig. 98 110 C-crystallographic axes of hornblende of amphibolite, Tagadur. Contours 2–1.5–0.5–0.1%

Fig. 99 100 poles to hornblende cleavages of amphibolite, Tagadur. Contours 8–6–2–1-2%

Fig. 100 300 poles to mica cleavages of banded gneiss, Jambur. Contours 12.9–10–6–2–1-5%

Fig. 101 300 quartz axes of banded gneiss, Jambur. Contours 4.2–3–1-5%

Fig. 102 115 poles to hornblende cleavages of amphibolite. Contours 11–10–6–2–0.95%

Fig. 103 100 cleavage plane intersections of hornblende of amphibolite, Nuggehalli. Contours 31–25–15–10–5–1%

Fig. 104 200 quartz axes of amphibolite, Nuggehalli. Contours 5–4–2–1-5%

Fig. 105 55 α–Vibration directions of olivine of dunite, Jambur. Contours 9–8–4–2–1%
Fig. 119 125 quartz axes of albitite, Tagadur.
Contours 7-5-4-3-2-1%

Fig. 120 100 quartz axes of albitite, Tagadur.
Contours 6-5-4-3-2-1/2%

Fig. 121 150 quartz axes of albitite, Tagadur.
Contours 7.5-6-5-4-3-2-1%
PLATE I

FIG. 1 Clastic feldspar grains in granitic gneiss, Pensamudra.

FIG. 2 Kinking in chlorite schist with strong vertical lineation. Pencil parallel to lineation, Byrapur.

FIG. 3 Chromite lenses and nodules, Byrapur.

FIG. 4 Big serpentine lens - growth insitu, Byrapur.
PLATE II

Fig. 1 Hornblende pencils in ecrite showing lineation towards the observer, Byrapur.

FIG. 2 Basal sections of hornblende pencils showing preferred orientation. 25 X

FIG. 3 Fayalite overlie massive serpentinite unconformably, Byrapur.

FIG. 4 Flow layering in fayalite, Byrapur.
PLATE III

FIG. 1 Horizontally disposed magnesite veins.

FIG. 2 Pillow structure in serpentine. Note deformation of underlying pillow due to the weight of overlying pillow, Tagadur.

FIG. 3 Pillow structure.

FIG. 4 Pillows showing vesicles or blow-holes.
PLATE IV

FIG. 1 Pillow structure.

FIG. 2 Five sided column in serpentinite, Tagadur.

FIG. 3 Chromite (dyke-like) faulted against amphibolite, Tagadur.

FIG. 4 Pillar like (pencil) chromite, Tagadur.
PLATE V

FIG. 1 Layered chromite, Pansamudra.

FIG. 2 Pencil gneiss, Byrapur. Note lineation of pencil dip away from the observer.

FIG. 3 Pencil gneiss, micro-section parallel to B. Note a band of isotropic quartz. 28 X crossed.

FIG. 4 Pencil gneiss, micro-section perpendicular to B. Note dots of quartz. 28 X crossed.
FIG. 1 Parallel arrangement of feldspar augens in augen gneiss. Note dislocation of aplite vein by slip cleavage parallel to foliation to form slip fold, Tagadur.

FIG. 2 Amphibolite showing alternate bands of hornblende and quartz. 25 X

FIG. 3 Magnetite pseudomorphous after hornblende in gneiss, Tagadur. 80 X

FIG. 4 Rough weathering of serpentinite showing hackly fracture, Tagadur.
FIG. 1 Serpentine. Note the growth of scaly antigorite from lizardite. 35 X crossed.

FIG. 2 Replacement of silicate minerals, amphibole, and pyroxene, by serpentines. 28 X Crossed.

FIG. 3 Replacement of amphibole by lizardite. 28 X crossed.

FIG. 4 Lizardite dusted with magnetite. 28 X crossed.
PLATE VIII

FIG. 1 Nodules of jasper in massive serpentinite, Byrapur.

FIG. 2 Pegmatite traversing parallel to serpentinite foliation, Pensamudra.

FIG. 3 Metamorphic differentiation. Note development of chlorite, vermiculite, and talc at the contact between serpentinite and pegmatite, Pensamudra.

FIG. 4 Chlorite black wall at contact between anorthosite (white) and serpentinite, Byrapur.
FIG. 1 Disintegration of olivine by serpentine minerals in dunite. 28 X crossed.

FIG. 2 Small lenses and nodules of talc-actinolite-serpentine-chlorite, Byrapur.

FIG. 3 Talc is replaced by lizardite and antigorite. 28 X crossed.

FIG. 4 Actinolite replaces chlorite. 28 X crossed.
FIG. 1 Feldspar showing herringbone structure in anorthosite, Byrapur. 28 X crossed.

FIG. 2 Feldspar showing pericline twinning in anorthite rock, Jambur. 28 X crossed.

FIG. 3 Zoned feldspar. Later albite rim around older bytownite grain. 28 X crossed.

FIG. 4 View of A-pit chromite working, Byrapur.
PLATE XI

Fig.1 Schlierens of chromite in massive serpentinite, Pyrapur.

Fig.2 —do—

Fig.3 Leopard ore. Note euhedral grains of olivine (serpentinized) in chromite. Specimen treated with acid to get contrast.

Fig.4 Anti-leopard ore. Euhedral grains of chromite in serpentine groundmass. 26 X
PLATE XII

Fig. 1 Chain texture in chromite. Note the joining of Octahedrons and cubes of chromite at their ends. 28 X

Fig. 2 Chain texture, Crude. 28 X

Fig. 3 Massive chromite ore fraying out to serpentininite through a zone of chain chromite. 28 X

Fig. 4 Chromite showing cumulus texture. Note the outline of chromite grains making an angle of 60°-120°. Reflected light. 60 X
PLATE: XIII

Fig. 1 Chromite showing breaking up of grains where each broken grain fits well with the neighbour. 28 x

Fig. 2 -do- 28 x

Fig. 3 Sheared chromite. 28 x

Fig. 4 Sheared chromite. Note rounded nature of the grains due to rubbing of grain boundaries. 28 x
PLATE XIV

Fig. 1 Chromite. A few grains show nodular habit. 28 X

Fig. 2 One set of Ilmenite rods in chromite.
Reflected light. 60 X

Fig. 3 Pyroxene grains show cumulus texture in pyroxenite. 28 X

Fig. 4 Dolerite showing radiating laths of feldspar
simulating basaltic texture. 28 X crossed.
Fig. 1 Section of albitite parallel to \(ab \) plane. Trace of the foliation plane (\(a \) axis of the fabric), not very conspicuous, runs East-West, that is, parallel to the length of the photograph. Majority of the grains are albites, rather slightly lenticular, the longer axes of the lenticles parallel to \(a \) fabric axis. Nicols Crossed. X28.

Fig. 2 Section of albitite parallel to \(bc \) plane. Trace of the foliation plane (\(b \) axis of the fabric), runs from top left to bottom right corner. Grain elongation parallel to \(b \) and trace of the foliation plane very conspicuous. X28.

Fig. 3 Section of albitite parallel to \(ab \) plane. Albites occur in large plates lying on the foliation plane \(ab \). Equally platy habit is exhibited by quartz and hornblende; since they are small in number they cannot be easily recognised in the photograph. X28.