Chapter 4

\(\gamma \text{-graph } G(\gamma) \) of some special graphs

4.1 Introduction

In this chapter we consider the family of all \(\gamma \)-sets in a graph \(G \) and we define the graph \(G(\gamma) = (V(\gamma), E(\gamma)) \) of \(G \) to be the graph whose vertices correspond 1 to 1 with the \(\gamma \)-sets of \(G \) and two \(\gamma \)-sets \(S_1 \) and \(S_2 \) are adjacent in \(G(\gamma) \) if there exist a vertex \(v \in S_1 \) and a vertex \(w \in S_2 \) such that \(v \) is adjacent to \(w \) and \(S_1 = S_2 - \{w\} \cup \{v\} \) or equivalently \(S_2 = S_1 - \{v\} \cup \{w\} \). We obtain \(\gamma \)-graph of caterpillars, comb and Lobster.

Definition 4.1.1. [11] We consider the family of all \(\gamma \)-sets in a graph \(G \) and we define \(G(\gamma) = (V(\gamma), E(\gamma)) \) to be the graph whose vertices correspond 1 to 1 with the \(\gamma \)-sets of \(G \) and two \(\gamma \)-sets say \(S_1 \) and \(S_2 \) are adjacent in \(G(\gamma) \) if there exist a vertex \(v \in S_1 \) and a vertex \(w \in S_2 \)
such that \(v \) is adjacent to \(w \) and \(S_1 = S_2 - \{w\} \cup \{v\} \) or equivalently \(S_2 = S_1 - \{v\} \cup \{w\} \).

Example 4.1.2.

\[S_1 = \{v_2, v_5, v_8\} \text{ and } S_2 = \{v_2, v_6, v_8\} \text{ are the } \gamma\text{-sets of } G. \]

Let \(v = v_5 \) and \(w = v_6 \).

Then

\[
S_2 - \{w\} \cup \{v\} = \{v_2, v_6, v_8\} - \{v_6\} \cup \{v_5\} = \{v_2, v_5, v_8\} = S_1
\]

\[
S_1 - \{v\} \cup \{w\} = \{v_2, v_5, v_8\} - \{v_5\} \cup \{v_6\} = \{v_2, v_6, v_8\} = S_2
\]
Definition 4.1.3. Caterpillar is a tree in which the removal of pendent vertices leaves a path.

Definition 4.1.4. A vertex \(v \) in a graph \(G = (V, E) \) is a \(\gamma \)-required vertex if it is an element of every \(\gamma \)-set of \(G \).

In a caterpillar, every vertex of degree \(\geq 4 \) is a \(\gamma \)-required vertex.

4.2 Main Results

Theorem 4.2.1. Let \(T \) be a caterpillar with exactly 2 supports that are \(\gamma \)-required vertices \(v_1 \) and \(v_2 \). If the number of vertices in between \(v_1 \) and \(v_2 \) of \(T \) is \(3k + 1 \) then \(T(\gamma) \) is a path of length \(k \).

![Fig 4.3](image-url)

Proof. Let \(T \) be a caterpillar as shown in Fig(4.3). Then the \(\gamma \)-sets of \(T \) can be listed in order as follows.

\[
S_1 = \{v_1, u_3, u_6, u_9, \ldots, u_{3k}, v_2\}
\]

\[
S_2 = \{v_1, u_3, u_6, u_9, \ldots, u_{3k-6}, u_{3k-3}, u_{3k-1}, v_2\}
\]

\[
S_3 = \{v_1, u_3, u_6, u_9, \ldots, u_{3k-9}, u_{3k-6}, u_{3k-4}, u_{3k-1}, v_2\}
\]

\[
S_4 = \{v_1, u_3, u_6, u_9, \ldots, u_{3k-9}, u_{3k-7}, u_{3k-4}, u_{3k-1}, v_2\}
\]
Here the γ-sets $S_2, S_3, S_4, \ldots, S_k$ are adjacent to both the preceding and succeeding γ-sets and hence get deg 2. The γ-set S_1 is adjacent to S_2 alone and S_{k+1} is adjacent to S_k alone. So both S_1 and S_{k+1} get deg 1. Thus we get a path $S_1, S_2, S_3, \ldots, S_{k+1}$ of length k. □

Theorem 4.2.2. Let T be a caterpillar as shown in Fig(4.3). If the number of vertices in between v_1 and v_2 of T is $3k + 2$ then $T(\gamma)$ is K_1.

Proof. Let T be a caterpillar with exactly 2 supports v_1 and v_2 which are γ-required vertices and $u_1, u_2, u_3, \ldots, u_{3k+2}$ be the vertices between v_1 and v_2. Then $S = \{v_1, v_2, u_3, u_6, u_9, \ldots, u_{3k}\}$ is the only γ-set of T and hence $T(\gamma)$ is K_1. □

Theorem 4.2.3. Let T be a caterpillar as shown in Fig(4.3). If the number of vertices in between v_1 and v_2 of T is $3k$ then $T(\gamma)$ is a step grid of order $k - 1$ with 2 pendent edges attached to it.

Proof. Let T be a caterpillar as shown in Fig(4.3). Then the γ-sets of T can be listed in order as follows.
\[S_1 = \{ v_1, u_3, u_6, u_9, \ldots, u_{3k}, v_2 \} \]
\[S_2 = \{ v_1, u_3, u_6, u_9, \ldots, u_{3k-6}, u_{3k-4}, u_{3k-1}, v_2 \} \]
\[S_3 = \{ v_2, u_3, u_6, u_9, \ldots, u_{3k-9}, u_{3k-7}, u_{3k-4}, u_{3k-1}, v_2 \} \]
\[\vdots \]
\[S_{\frac{(k+1)(k+2)}{2}} = \{ v_1, u_1, u_4, u_7, \ldots, u_{3k-8}, u_{3k-5}, u_{3k-2}, v_2 \} \].

Of the \(\frac{(k+1)(k+2)}{2} \gamma \)-sets of \(T \), 2 \(\gamma \)-sets get deg 1, \(k \) \(\gamma \)-sets get deg 2, 2\((k - 1) \) \(\gamma \)-sets get deg 3 and remaining \(\frac{(k+1)(k+2)}{2} - 3k \) \(\gamma \)-sets get deg 4 in \(T(\gamma) \) and they form a step grid of order \(k - 1 \). \(\square \)

Now let us consider a caterpillar with exactly 3 supports \(v_1, v_2, v_3 \) taken in order which are \(\gamma \)-required vertices.

Theorem 4.2.4. Let \(T \) be a caterpillar with exactly 3 supports \(v_1, v_2, v_3 \) taken in order and suppose that they are \(\gamma \)-required vertices. If the number of vertices in between \(v_1, v_2 \) and \(v_2, v_3 \) are \(3m + 1 \) and \(3n + 1 \) for \(m, n = 1, 2, 3, \ldots \) then \(T(\gamma) = P_{m+1} \times P_{n+1} \).

Proof. Let \(u_1, u_2, u_3, \ldots, u_{3m+1} \) and \(w_1, w_2, w_3, \ldots, w_{3n+1} \) be the vertices in between \(v_1, v_2 \) and \(v_2, v_3 \) respectively. Then the number of vertices in between \(v_1 \) and \(v_2 \) that occur in a \(\gamma \)-set of \(T \) is \(m \) and the number of such sets of vertices is \(m + 1 \). The possible sets are \(\{ u_2, u_5, u_8, \ldots, u_{3m-1} \}, \{ u_3, u_5, u_8, u_{11}, \ldots, u_{3m-1} \}, \{ u_3, u_6, u_8, u_{11}, \ldots, u_{3m-1} \}, \{ u_3, u_6, u_9, \ldots, u_{3m-1} \}, \ldots, \{ u_3, u_6, u_9, \ldots, u_{3m} \} \).
Similarly number of vertices in between v_2 and v_3 that occur in a
γ-set of T is n and the number of possible sets of vertices is $n + 1$. The
possible sets are $\{w_2, w_5, w_8, \ldots, w_{3n-1}\}, \{w_3, w_5, w_8, w_{11}, \ldots, w_{3n-1}\}$,
$\{w_3, w_6, w_8, w_{11}, \ldots, w_{3n-1}\}, \{w_3, w_6, w_9, w_{11}, \ldots w_{3n-1}\}, \ldots, \{w_3, w_6,$
$w_9, \ldots, w_{3n}\}$. Since v_1, v_2, v_3 are γ-required vertices, these 3 vertices
occur in all the γ-sets of T. Every set of vertices between v_1 and v_2
together with a set of vertices in between v_2 and v_3 and v_1, v_2, v_3 form
a γ-set of T. Thus each γ-set of T has $m + n + 3$ vertices and the
number of γ-sets of T is $(m + 1) \times (n + 1)$. The γ-sets of T are as
follows:

1. $S_1 = \{v_1, u_2, u_5, u_8, \ldots, u_{3m-1}, v_2, w_2, w_5, w_8, \ldots, w_{3n-1}, v_3\}$
2. $S_2 = \{v_1, u_2, u_5, u_8, \ldots, u_{3m-1}, v_2, w_3, w_5, w_8, \ldots, w_{3n-1}, v_3\}$
3. $S_3 = \{v_1, u_2, u_5, u_8, \ldots, u_{3m-1}, v_2, w_3, w_6, \ldots, w_{3n-1}, v_3\}$
4. \vdots
5. $S_{n+1} = \{v_1, u_2, u_5, u_8, \ldots, u_{3m-1}, v_2, w_3, w_6, w_9, \ldots, w_{3n}, v_3\}$

1. $S_1 = \{v_1, u_3, u_5, u_8, \ldots, u_{3m-1}, v_2, w_2, w_5, w_8, \ldots, w_{3n-1}, v_3\}$
2. $S_2 = \{v_1, u_3, u_5, u_8, \ldots, u_{3m-1}, v_2, w_3, w_5, w_8, \ldots, w_{3n-1}, v_3\}$
3. $S_3 = \{v_1, u_3, u_5, u_8, \ldots, u_{3m-1}, v_2, w_3, w_6, w_8, \ldots, w_{3n-1}, v_3\}$
4. \vdots
\[S_{n+} = \{v_1, u_3, u_8, \ldots, u_{3m-1}, v_2, w_3, w_6, w_9, \ldots, w_{3n-1}, v_3\} \]

\[\vdots \]

\[S_1 = \{v_1, u_3, u_5, u_9, \ldots, u_{3m}, v_2, w_3, w_5, w_8, \ldots, w_{3n-1}, v_3\} \]

\[S_2 = \{v_1, u_3, u_6, u_9, \ldots, u_{3m}, v_2, w_3, w_5, w_8, \ldots, w_{3n-1}, v_3\} \]

\[S_3 = \{v_1, u_3, u_6, u_9, \ldots, u_{3m}, v_2, w_3, w_6, w_8, \ldots, w_{3n-1}, v_3\} \quad (m+1) \]

\[\vdots \]

\[S_{n+1} = \{v_1, u_3, u_6, u_9, \ldots, u_{3m}, v_2, w_3, w_6, w_9, \ldots, w_{3n}, v_3\} \]

The \(\gamma \)-sets \(S_i \) for \(i = 2, 3, 4, \ldots, n \) of the collections \((2), (3), \ldots, (m) \) are adjacent to the preceding and succeeding \(\gamma \)-sets of the same collection and \(S_i \) of the preceding and succeeding collections. Thus the number of \(\gamma \)-sets of \(T \) getting deg 4 is \((n-1)(m-1) \).

The \(\gamma \)-set \(S_1 \) of \((1) \) is adjacent to \(S_2 \) of \((1) \) and \(S_1 \) of \((2) \).

The \(\gamma \)-set \(S_1 \) of \((m+1) \) is adjacent to \(S_2 \) of \((m+1) \) and \(S_{n+1} \) of \((2) \).

The \(\gamma \)-set \(S_{n+1} \) of \((1) \) is adjacent to \(S_n \) of \((1) \) and \(S_{n+1} \) of \((2) \).

The \(\gamma \)-set \(S_{n+1} \) of \((m+1) \) is adjacent to \(S_n \) of \((m+1) \) and \(S_{n+1} \).

Thus the number of \(\gamma \)-sets getting deg 2 is 4.

The \(\gamma \)-sets \(S_2, S_3, S_4, \ldots, S_n \) of \((1) \) are adjacent to the preceding and succeeding \(\gamma \)-sets of same collection and respective \(\gamma \)-sets of \((2) \).

Similarly the \(\gamma \)-sets \(S_2, S_3, S_4, \ldots, S_n \) of \((m+1) \) are adjacent to preceding and succeeding \(\gamma \)-sets of the same collection and succeeding \(\gamma \)-sets of collection \((m) \). Thus these \((2n-1) \) \(\gamma \)-sets get deg 3. Also
S_1 of the collections 2, 3, 4, . . . , m get deg 3 by the adjacency of S_2, of the same collection and S_1 of the preceding and succeeding collections. Similarly S_{n+1} of the collections 2, 3, 4, . . . , m get deg 3 by the adjacency of S_n of the same collections and S_{n+1} of the preceding and succeeding collections. Thus number of γ-sets of T getting deg 3 is $2(n - 1) + 2(m - 1)$. As the γ-graph of a tree is connected, these vertices form a grid graph $P_{m+1} \times P_{n+1}$.

Note 4.2.5. Every grid graph $P_m \times P_n$ is a γ-graph of some caterpillar for $m, n \geq 2$.

Theorem 4.2.6. Let T be a caterpillar with exactly 3 supports v_1, v_2, v_3 taken in order and suppose that they are γ-required vertices. If the number of vertices in between v_1, v_2 and v_2, v_3 are $3m + 1$ and $3n + 2$ for $m, n = 1, 2, 3, \ldots$, then $T(\gamma)$ is a path of length m.

Proof. As in the above theorem the number of possible sets of vertices in between v_1 and v_2 is $m + 1$ and the number of vertices in each such set is m. Since in between v_1 and v_3 there are $n + 2$ vertices, the only set that dominates these $n + 2$ vertices is $(3, 6, 9, \ldots, 3k)$ and hence the number of γ-sets of T are $(m + 1) \times 1 = m + 1$ and the number of vertices in each γ-set is $m + n - 3$. The adjacency among
these $m+1$ γ-sets is due to the adjacency among the $m+1$ vertices in between v_1 and v_2. Hence the γ-graph $T(\gamma)$ is a path of length m. \hfill \Box

Theorem 4.2.7. Let T be a caterpillar with exactly 3 supports v_1, v_2, v_3 taken in order and suppose that they are γ-required vertices. If the number of vertices in between v_1, v_2 and v_2, v_3, are $3m+2$ and $3n+2$ for $m, n = 1, 2, 3, \ldots$ then $T(\gamma)$ is K_1.

Proof. We know that if there are $3m+2$ vertices in between v_1 and v_2 then only one γ-set exist. Here there is only one dominating set and hence the number of γ-sets of T is 1. So the γ-graph $T(\gamma)$ is K_1. \hfill \Box

Theorem 4.2.8. Let T be a caterpillar with exactly 3 supports v_1, v_2, v_3 taken in order and suppose that they are γ-required vertices. If the number of vertices in between v_1, v_2 and v_2, v_3 are $3m+2$ and $3n$ for $m, n = 1, 2, 3, \ldots$ then $T(\gamma)$ is a step grid of order $m-1$ with 2 pendent edges.

Proof. By theorem 4.2.3 in between v_1 and v_2 we get a step grid of order $m-1$ with 2 pendent edges attached to it and by theorem 4.2.2
there is only one dominating set between v_2 and v_3. Hence the γ-graph of T is a step grid of order $m - 1$ with 2 pendent edges attached to it.

\[\square \]

4.3 γ-graph of a comb

Definition 4.3.1. The comb denoted by Cb_n is a graph obtained from the path P_n by attaching an edge at each vertex of P_n.

Notation 4.3.2. Let the vertices of the comb whose edges are subdivided $3k$ times be labeled as in the figure given below.

Theorem 4.3.3. If G is a graph obtained by subdividing the pendent edges of Cb_n l times then we get the following.

1. If $l = 3k + 1$ then $G(\gamma) \cong K_1$. 72
(2) If \(l = 3k + 2 \) then \(G(\gamma) \cong P_n(\gamma) \).

(3) If \(l = 3k \) then \(G(\gamma) \) is a graph of order \((k + 2) + (k + 1)(nc_1 + nc_2 + \ldots + nc_{n-1})\).

Proof. Case 1. \(l = 3k + 1 \)

\(S = \{21, 22, 23, \ldots, 2n, 51, 52, 53, \ldots, 5n, 81, 82, 83, \ldots, 8n, \ldots, (3k + 2)1, (3k + 2)2, (3k + 2)3, \ldots, (3k + 2)n\} \) is the only \(\gamma \)-set of \(G \) and hence \(G(\gamma) \cong K_1 \).

Case 2. \(l = 3k + 2 \)

\(S = \{31, 32, 33, \ldots, 3n, 61, 62, \ldots, 6n, \ldots, (3k + 3)1, (3k + 3)2, (3k + 3)3, \ldots, (3k + 3)n\} \) together with a \(\gamma \)-set of \(<\{11, 12, 13, \ldots, 1n\}> \) form a \(\gamma \)-set of \(G \). As \(S \) is fixed and \(P_n \) has different \(\gamma \)-sets, the \(\gamma \)-graph of \(G \) is isomorphic to the \(\gamma \)-graph of \(P_n \),

(i.e) \(G(\gamma) \cong P_n(\gamma) \). Hence ,

(i) if \(n = 3m \) then \(G(\gamma) \cong K_1 \).

(ii) if \(n = 3m + 1 \) then \(G(\gamma) \cong SG(k + 1) \); a step grid of order \(k + 1 \)

(iii) if \(n = 3m + 2 \) then \(G(\gamma) \cong P_{m+2} \).

Case 3. \(l = 3k \)

\(S_1 = \{11, 12, 13, \ldots, 1n, 41, 42, 43, \ldots, 4n, 71, 72, 73, \ldots, 7n, \ldots, (3k + 1)1, (3k+1)2, (3k+1)3, \ldots, (3k+1)n\} \), \(S_2 = \{21, 22, 23, \ldots, 2n, 41, 42, \ldots \} \).
43, ..., 4n, 71, 72, 73, ..., 7n, ..., (3k+1)1, (3k+1)2, (3k+1)3, ..., (3k+1)n}, S_3 = \{21, 22, 23, ..., 2n, 51, 52, ..., 5n, 71, 72, ..., 7n, ..., (3k+1)1, (3k+1)2, ..., (3k+1)n\}, ..., S_{k+1} = \{21, 22, 23, ..., 2n, 51, 52, 53, ..., 5n, 81, 82, 83, ..., 8n, ..., (3k+2)1, (3k+2)2, (3k+2)3, ..., (3k+2)n\}, ... are \(k+2\) \(\gamma\)-sets of \(G\) with \(|S_i| = (k+1)n\) for \(i = 1, 2, 3, \ldots, k+2\). These are the \(k+2\) \(\gamma\)-sets in which all the vertices of \((k+1)\) rows occur.

Now consider 21, 22, 23, ..., 2n of \(S_2\). Let us replace one of the vertices of 21, 22, 23, ..., 2n by the corresponding vertex of 11, 12, 13, ..., 1n. Doing this for all the \(n\) vertices we get \(nC_1 = n\ \gamma\)-sets of \(G\). Let us denote the set of these \(n\ \gamma\)-sets by \(A_1\).

Similarly let us replace any 2 vertices of 21, 22, 23, ..., 2n of \(S_2\) by the corresponding 2 vertices of 11, 12, 13, ..., 1n. Doing this for all pairs of vertices we get \(nC_2\ \gamma\)-sets of \(G\). Let us denote these \(\gamma\)-sets by the set \(A_2\).

Proceeding like this, replacing \((n-1)\) vertices of 21, 22, 23, ..., 2n by the corresponding \((n-1)\) vertices of 11, 12, 13, ..., 1n we get \(nC_{n-1} = n\ \gamma\)-sets of \(G\). Let us denote these \(n\gamma\)-sets by \(A_{n-1}\). Thus, using 2 sets of \(n\) tuples we get \(nC_1 + nC_2 + nC_3 + \ldots + nC_{n-1}\) sets of \(G\). Let us denote these \(nC_1 + nC_2 + nC_3 + \ldots + nC_{n-1}\ \gamma\)-sets by \(U_1\).

Similar process can be done for 41, 42, 43, ..., 4n of \(S_2\) with 51, 52, 53,
\[\ldots, 5n \text{ of } S_3, 71, 72, 73, \ldots, 7n \text{ of } S_2, 81, 82, 83, \ldots, 8n \text{ of } S_4, 101, 102, 103, \ldots, 10n \text{ of } S_2 \text{ with } 111, 112, 113, \ldots, 11n \text{ of } S_5, \ldots, (3k+1)1, (3k+1)2, (3k+1)3, \ldots, (3k+1)n \text{ of } S_2 \text{ with } (3k+2)1, (3k+2)2, (3k+2)3, \ldots, (3k+2)n \text{ of } S_{k+2}. \] Thus we get the set \(U_2, U_3, U_4, \ldots, U_{k+1} \). Hence the total number of \(\gamma \)-sets of \(G \) is \((k+2) + (k+1)(nC_1 + nC_2 + \ldots + nCn - 1) \). \(\square \)

Theorem 4.3.4. If \(G \) is a graph obtained by subdividing the pendent edges of \(C_b_n \) \(3k \) times then the degree of all the vertices of \(G(\gamma) \) is \(n \) except for the \(k \) vertices which have degree \(2n \). Further \(G(\gamma) \) is bipartite.

Proof. First let us find the deg of vertices of \(G(\gamma) \). The \(\gamma \)-sets of \(G \) are found as in case (3) of theorem 4.3.3.

Step (1). By the construction of \(\gamma \)-sets, every \(\gamma \)-set in \(A_1 \) is adjacent to \(S_1 \). As \(S_1 \) is the only \(\gamma \)-set containing \(11, 12, 13, \ldots, 1n \) it is not adjacent to any other \(\gamma \)-set of \(G \). Hence degree of \(S_1 \) is \(n \).

Step (2). The \(n \) \(\gamma \)-sets obtained by replacing the \(nC_{n-1} \) vertices of \(11, 12, 13, \ldots, 1n \) of \(S_1 \) by the corresponding \((n - 1) \) vertices of \(21, 22, 23, \ldots, 2n \) of \(S_2 \) have only one vertex different from \(S_2 \). Also the \(n \) \(\gamma \)-sets obtained by replacing only one vertex of \(41, 42, 43, \ldots, 4n \) of \(S_2 \) by the corresponding vertex of \(51, 51, 53, \ldots, 5n \) of \(S_3 \) have only
one vertex different from S_2. Hence these n γ-sets are adjacent to S_2. Thus degree of S_2 is $2n$.

Step (3). The n γ-sets obtained by replacing the nC_{n-1} vertices of $41, 42, 43, \ldots, 4n$ of S_2 by the corresponding vertices of $51, 52, 53, \ldots, 5n$ of S_3 have only one vertex different from S_3. Hence these n γ-sets are adjacent to S_3. Also the $nC_1 = n$ γ-sets obtained by replacing only one vertex of $71, 72, 73, \ldots, 7n$ of S_2 by the corresponding vertex of $81, 82, 83, \ldots, 8n$ of S_4 have only one vertex different from S_3. Hence these n γ-sets are also adjacent to S_3. Thus degree of S_3 is $2n$.

Step (4). Proceeding in this way, degree of S_{k+1} is $2n$ and S_{k+2} is adjacent to n γ-sets which are obtained by replacing nC_{n-1} vertices of $(3k + 1)1, (3k + 1)2, \ldots, (3k + 1)n$ of S_2 by the corresponding vertices of $(3k + 2)1, (3k + 2)2, \ldots, (3k + 2)n$ of S_{k+2} and S_{k+2} is the only γ-set containing $(3k + 2)1, (3k + 2)2, \ldots, (3k + 2)n$. Thus S_{k+2} in $G(\gamma)$ is of degree $2n$.

Step (5). By step (1), every γ-set $A_1 \in U_1$ get deg 1. By the construction of A_1 and A_2, corresponding to every γ-set of $A_2 \in U_1$, there are 2 γ-sets in A_1 which differ by one vertex. Hence every γ-set of A_2 is adjacent to 2 γ-sets of A_1. Thus the 2 γ-sets of A_1 get degree nC_{n-2} and these $2 \times nC_2$ is divided equally among all the γ-sets of A_1. Hence the total degree of each γ-set of $A_1 = 2 \times \frac{nC_2}{nC_1} + 1 =$
\[
\frac{2n(n-1)}{1 \times 2} \times \frac{1}{n} + 1 = n - 1 + 1 = n.
\]

Step (6). By step (5), every \(\gamma \)-set of \(\mathcal{A}_2 \) get deg 2. By the construction of \(\mathcal{A}_3 \), corresponding to every \(\gamma \)-set of \(\mathcal{A}_3 \), there are 3 \(\gamma \)-sets on \(\mathcal{A}_2 \) which differ by one vertex. Hence every \(\gamma \)-set of \(\mathcal{A}_3 \) is adjacent to 3 \(\gamma \)-sets of \(\mathcal{A}_2 \). Thus the \(\gamma \)-sets of \(\mathcal{A}_2 \) get degree \(3 \times nC_3 \) and this is distributed equally among all the \(\gamma \)-sets of \(\mathcal{A}_2 \). Thus every \(\gamma \)-set of \(\mathcal{A}_2 \) get deg \(3 \times nC_3 + 2 = n \).

Step (7). This process continues up to \(\mathcal{A}_{n-2} \) and the degree of each \(\gamma \)-set of \(\mathcal{A}_{n-2} \in U = n - 1 \times \frac{nC_3}{nC_2} + n - 2 = n \).

Step (8). By step (4), each \(\gamma \)-set of \(\mathcal{A}_{n-1} \) is adjacent to \(S_{k+2} \) and hence get deg 1 and get deg \(n - 1 \) by the adjacency of \(\gamma \)-sets of \(\mathcal{A}_{n-2} \).

Thus deg of \(\gamma \)-sets of \(\mathcal{A}_{n-1} \in U_1 = n \times \frac{nC_n}{nC_{n-1}} + n - 1 = n \).

Thus each \(\gamma \)-set of \(U_1 \) is adjacent to \(n \) \(\gamma \)-sets of \(G \). Similarly we can prove that each \(\gamma \)-set of \(U_2, U_3, U_4, \ldots U_{k+1} \) are also adjacent to \(n \) \(\gamma \)-sets of \(G \). Thus each \(\gamma \)-set of \(G \) is adjacent to \(n \) \(\gamma \)-sets of \(G \) except the \(k \) \(\gamma \)-sets namely \(S_2, S_3, S_4, \ldots, S_{k+1} \).

Now let us prove that \(G(\gamma) \) is bipartite.

By the construction, the \(\gamma \)-set \(S_1 \) is adjacent to the \(\gamma \)-set of \(\mathcal{A}_1 \in U_1 \). Similarly the \(\gamma \)-sets of \(\mathcal{A}_2, \mathcal{A}_3, \ldots, \mathcal{A}_{n-1} \) of \(U_1 \) are adjacent to the \(\gamma \)-set of \(\mathcal{A}_1 \) and \(\mathcal{A}_3, \mathcal{A}_2 \) and \(\mathcal{A}_4, \ldots, \mathcal{A}_{n-2} \) and \(S_2 \) respectively. Hence if we collect \(S_1, \mathcal{A}_2, \mathcal{A}_4, \ldots \) in one set \(C \) and \(\mathcal{A}_1, \mathcal{A}_3, \mathcal{A}_5, \ldots \) in another.
set \mathcal{D} then every edge of $A_1, A_2, A_3, \ldots, A_{n-1} \in U_1, S_1, S_2$ has one end in the first collection and the other end in the second collection. As the γ-set S_2 is adjacent to $A_{n-1} \in U_1$ and $A_1 \in U_2$, it is contained in the collection which does not contain $A_{n-1} \in U_2$. This process can be continued for S_2 and $A_1, A_2, A_3, \ldots, A_{n-1} \in U_2, S_3$ and $A_1, A_2, A_3, \ldots, A_{n-1} \in U_3$ and so on.

Case (1). n is even and k is either odd or even.

Let S_1 and $A_2, A_4, A_6, \ldots, A_{n-2} \in U_1$ belong to \mathcal{C} and $A_1, A_3, A_5, \ldots, A_{n-1} \in U_1, S_1, S_2$ has one end in the first collection and the other end in the second collection. As the γ-set S_2 is adjacent to $A_{n-1} \in U_1$ and $A_1 \in U_2$, it is contained in the collection which does not contain $A_{n-1} \in U_2$. This process can be continued for S_2 and $A_1, A_3, A_5, \ldots, A_{n-1} \in U_2, S_3$ and $A_1, A_2, A_3, \ldots, A_{n-1} \in U_3$ and so on.

Case (2). Both n and k are odd.

Let $A_2, A_4, A_6, \ldots, A_{n-1} \in U_1, S_1 \in \mathcal{C}$. Then $A_1, A_3, A_5, \ldots, A_{n-2} \in U_1, S_1, S_2, S_3, \ldots, S_{k+2}$ belong to \mathcal{D}. Then $S_2 \in \mathcal{D}$ and hence $A_1, A_3, A_5, \ldots, A_{n-2} \in U_2$ belong to \mathcal{C} . Proceeding like this

Case (3). n is odd and k is even.
Obviously if \(S_1 \) and \(A_2, A_4, A_6, \ldots, A_{n-1} \) of \(U_1 \) belong to \(C \) then
\(A_1, A_3, A_5, \ldots, A_{n-2} \) belong to \(D \), \(S_2 \in D \) and \(A_1, A_3, A_5, \ldots, A_{n-2} \in U_2 \) belong to \(C \), \(A_2, A_4, A_6, \ldots, A_{n-1} \in U_2 \) belong to \(D \) and so on
\[C = \{ A_2, A_4, A_6, \ldots, A_{n-1} \in U_1, U_3, U_5, \ldots U_{k+1}, S_1, S_3, S_{K+1} \} \]
\[D = \{ A_2, A_4, A_6, \ldots, A_{n-1} \in U_2, U_4, U_6, \ldots U_k \} \]

In all the 3 cases \(C \cup D = V(G(\gamma)) \) and every edge of \(G(\gamma) \) has one end in \(C \) and other end in \(D \). Hence \(G(\gamma) \) is bipartite. \(\square \)

Let us find the number of \(\gamma \)-sets of a special type of spider.

Definition 4.3.5. A tree with exactly one vertex of deg \(\geq 3 \) is called a spider. It is a star graph \(K_{1,n} \) with some or all of the edges subdivided any number of times.

Remark 4.3.6. (1)If an edge of \(K_{1,n} \) is subdivided by \(m \) vertices in a spider \(T \) then we get a path \(P \) of length \(m + 1 \) from the centre of
$K_{1,n}$ to the pendent vertex of the subdivided edge. Hence

$$\gamma(P) = k + 1 \text{ if } m = 3k$$
$$= k + 1 \text{ if } m = 3k + 1$$
$$= k + 2 \text{ if } m = 3k + 2$$

(2) Let T be a spider with a star graph $K_{1,4}$. Let e_1, e_2, e_3, e_4 be the edges of $K_{1,4}$ which are subdivided by m_1, m_2, m_3, m_4 vertices and let P_1, P_2, P_3, P_4 be the respective paths obtained by these subdivisions. Then we get the following.

(i) If $m_i = 3k_i$ for $i = 1, 2, 3, 4$ then paths obtained are dominated by k_{i+1} vertices including the centre. In the γ-set of T the centre of $K_{1,n}$ is counted in the γ-set of only one path. Hence $\gamma(T) = k_1 + k_2 + k_3 + k_4 + 1$ i.e. $\gamma(T) = \sum_{i=1}^{4} k_i + 1$.

(ii) If $m_i = 3k_i + 1$ for $i = 1, 2, 3, 4$ then also the paths obtained by subdivision are dominated by $k + 1$ vertices by excluding the centre and including at least one support. Hence $\gamma(T) = (k_1 + 1) + (k_2 + 1) + (k_3 + 1) + (k_4 + 1) = \sum_{i=1}^{4} (k_i + 1)$.

(iii) If $m_i = 3k_i + 2$ for $i = 1, 2, 3, 4$ then the path obtained are dominated by $k_{i+1} + 1$ vertices where the centre is included in the dominating set of each path. In the γ-set of T, the centre is
counted once. Hence $\gamma(T) = (k_1 + 1) + (k_2 + 1) + (k_3 + 1) + (k_4 + 1) + 1 = \sum_{i=1}^{4} (k_i + 1) + 1$.

(iv) If $m_1 = 3k_1, m_2 = 3k_2, m_3 = 3k_3 + 1, m_4 = 3k_4 + 1$ then $\gamma(T) = (k_1 + k_2 + 1) + (k_3 + 1) + (k_4 + 1) = \sum_{i=1}^{4} (k_i + 1) + 2$. [By (i) and (ii)].

(v) If $m_1 = 3k_1 + 1, m_2 = 3k_2 + 1, m_3 = 3k_3 + 2, m_4 = 3k_4 + 2$ then $\gamma(T) = (k_1 + 1) + (k_2 + 1) + [(k_3 + 1) + (k_4 + 1) + 1] = \sum_{i=1}^{4} (k_i + 1) + 1$. [By (ii) and (iii)].

(vi) If $m_1 = 3k_1 + 2, m_2 = 3k_2 + 2, m_3 = 3k_3, m_4 = 3k_4$ then $\gamma(P_1 \cup P_2) = (k_1 + 1) + (k_2 + 1) + 1$ and $\gamma(P_3 \cup P_4) = k_3 + k_4 + 1$. The γ-sets of both $P_1 \cup P_2$ and $P_3 \cup P_4$ contains the centre. Counting the centre once in the γ- set of T, $\gamma(T) = (k_1 + 1) + (k_2 + 2) + (k_3 + k_4 + 1) = \sum_{i=1}^{4} (k_i + 2) + 1$.

(vii) If $m_1 = 3k_1 + 1, m_2 = 3k_2, m_3 = 3k_3 + 1, m_4 = 3k_4 + 1$ then $\gamma(T) = (k_1 + k_2 + 1) + (k_3 + 1) + (k_4 + 1) = \sum_{i=1}^{4} (k_i + 3)$.

(viii) If $m_1 = 3k_1, m_2 = 3k_2 + 1, m_3 = 3k_3 + 1, m_4 = 3k_2$ then $\gamma(T) = (k_1 + 1) + (k_2 + 1) + (k_3 + 1) + (k_4 + 1) = \sum_{i=1}^{4} (k_i + 4)$.

(ix) If $m_1 = 3k_1, m_2 = 3k_2 + 1, m_3 = 3k_2 + 1, m_4 = 3k_4 + 2$ then $\gamma(T) = (k_1 + 1) + (k_2 + 1) + (k_3 + 1) + (k_4 + 1) = \sum_{i=1}^{4} (k_i + 4)$.

81
(x) If \(m_1 = 3k_1, m_2 = 3k_2, m_3 = 3k_3, m_4 = 3k_4 + 1 \), then \(\gamma(T) = (k_1 + k_2 + k_3 + 1) + (k_4 + 1) = \sum_{i=1}^{4}(k_i + 2) \).

(xi) If \(m_1 = 3k_1, m_2 = 3k_2 + 1, m_3 = 3k_3 + 1, m_4 = 3k_4 + 1 \) then
\[
\gamma(T) = k_1 + (k_2 + 1) + (k_3 + 1) + (k_4 + 1) = \sum_{i=1}^{4}(k_i + 3).
\]

(xii) If \(m_1 = 3k_1, m_2 = 3k_2, m_3 = 3k_3, m_4 = 3k_4 + 2 \) then
\[
\gamma(T) = (k_1 + k_2 + k_3 + 1) + (k_4 + 1) = \sum_{i=1}^{4}(k_i + 2).
\]

(xiii) If \(m_1 = 3k_1 + 1, m_2 = 3k_2 + 1, m_3 = 3k_3 + 1, m_4 = 3k_4 + 2 \) then
\[
\gamma(T) = (k_1 + k_2 + k_3 + 1) + (k_4 + 1) = \sum_{i=1}^{4}(k_i + 4).
\]

(xiv) If \(m_1 = 3k_1, m_2 = 3k_2 + 2, m_3 = 3k_3, m_4 = 3k_4 + 2 \) then
\[
\gamma(T) = (k_1 + 1) + (k_2 + 2) + (k_3 + 3) + (k_4 + 1) = \sum_{i=1}^{4}(k_i + 4).
\]

(xv) If \(m_1 = 3k_1 + 1, m_2 = 3k_2 + 2, m_3 = 3k_3 + 2, m_4 = 3k_4 + 2 \) then
\[
\gamma(T) = (k_1 + 1) + (k_2 + 1) + (k_3 + 1) + (k_4 + 1) = \sum_{i=1}^{4}(k_i + 4).
\]

Theorem 4.3.7. For a spider \(T \), \(\gamma(T) \leq \sum_{i=1}^{n}(k_i + 1) + 1 \) where \(k_i \)'s are given by \(m_i = 3k_i + r \), \(m_i \)'s are number of vertices subdividing the edges \(e_i (1 \leq i \leq n) \) and \(i = 0, 1, 2 \).

Proof. Suppose a spider \(T \) has a star graph \(K_{1,n} \) and each edge \(e_i \) of \(K_{1,n} \) be subdivided by \(m_i = 3k_i + r, r = 0, 1, 2 \).
Case (1) All the edges of the star graph are subdivided by equal number of vertices
i.e) $m_1 = m_2 = m_3 = \ldots = m_n$.

Case (1.1) $m_i = 3k \forall i$.

Then we get $k_1 = k_2 = k_3 = \ldots = k_n = k$.

$\gamma(T) = \sum_{i=1}^{n} k_i + 1 = nk + 1$.[as in (i)]

Case (1.2) $m_i = 3k_i + 1$.

Then as in (ii), $\gamma(T) = \sum_{i=1}^{n} k_i + 1 = n(k + 1)$.

Case (1.3) $m_i = 3k_i + 2$.

Then as in (iii), $\gamma(T) = \sum_{i=1}^{n} k_i + 1 = n(k + 1) + 1$.

Case (2) The edges of the star graph $K_{1,n}$ in T are subdivided by different number of vertices

Case(2.1) All the edges of the star graph are subdivided by $m_i = 3k_i \forall i$ (or) $m_i = 3k_i + 1 \forall i$ (or) $m_i = 3k_i + 2 \forall i$ vertices.

When $m_i = 3k_i$, $\gamma(T) = \sum_{i=1}^{n} (k_i + 1)$. [as in (i)]

When $m_i = 3k_i + 1$, $\gamma(T) = \sum_{i=1}^{n} (k_i + 1)$ [as in (ii)].

When $m_i = 3k_i + 2$, $\gamma(T) = \sum_{i=1}^{n} (k_i + 1) + 1$ [as in (iii)]

Case(2.2) $m_i = 3k_i$ for $1 \leq i \leq l$ and $m_i = 3k_i + 1$ for $l + 1 \leq i \leq n$.

Without loss of generality, let $m_i = 3k_i$ for $i = 1, 2, 3, \ldots, l$ and $m_i = 3k_i + 1$ for $i = l + 1, l + 2, l + 3, \ldots, n$ where $1 \leq l < n$. Then as in
(iv) \(\gamma(T) = \sum_{i=1}^{n} (k_i + 1) + n - l \).

Case (2.3) \(m_i = 3k_i + 1 \) for \(1 \leq i \leq l \) and \(m_i = 3k_i + 2 \) for \(l+1 \leq i \leq n \).

Without loss of generality, let \(m_i = 3k_i + 1 \) for \(i = 1, 2, 3, \ldots, l \) and \(m_i = 3k_i + 2 \) for \(i = l+1, l+2, \ldots, n \) where \(1 \leq l \leq n \). Then as in (v) \(\gamma(T) = \sum_{i=1}^{n} (k_i + 1) + l \).

Case (2.4) \(m_i = 3k_i + 2 \) for \(1 \leq i \leq l \) (or) \(m_i = 3k_i \) for \(l+1 \leq i \leq n \).

Let \(m_i = 3k_i + 2 \) for \(i = 1, 2, 3, \ldots l \) and \(m_i = 3k_i \) for \(i = l+1, l+2, \ldots, n \) where \(1 \leq l < n \). Then by result (vi) \(\gamma(T) = \sum_{i=1}^{n} k_i + 1 + 1 \).

Case (2.5) Let \(0 < r < s < n \), \(m_i = 3k_i \) for \(1 \leq i \leq r \), \(m_i = 3k_i + 1 \) for \(r+1 \leq i \leq s \) and \(m_i = 3k_i + 2 \) for \(s+1 \leq i \leq n \). Then

\[
\gamma(T) = \sum_{i=1}^{r} k_i + 1 + \sum_{i=r+1}^{s} (k_i + 1) + \sum_{i=s+1}^{n} (k_i + 1) \\
= \sum_{i=1}^{n} k_i + 1 + s - r + n - s \\
= \sum_{i=1}^{n} k_i + n - r + 1
\]

Thus from all the above cases we get, \(\gamma(T) = \sum_{i=1}^{n} (k_i + 1) + 1 \). \(\square \)

Now let us find the number of \(\gamma \) - sets of a special type of Lobster.

Definition 4.3.8. Lobster is a tree in which the removal of pendent vertices leaves a path.

\[84\]
Theorem 4.3.9. Let G be a Lobster as given in the following figure. Then $G(\gamma)$ is of order $3 + 2 \left(nC_1 + nC_2 + nC_3 + \ldots + nC_{n-1} \right)$, where each γ-set of G is of deg n except one which is of deg $2n$.

Proof. Let G be a Lobster such that each vertex of the path of length n is adjacent to 2 paths of length 2. $v_{31}, v_{32}, v_{33}, \ldots, v_{3n}$ are the vertices of the path and $v_{21}, v_{22}, v_{23}, \ldots, v_{2n}$ and $v_{41}, v_{42}, v_{43}, \ldots, v_{4n}$ are vertices which are adjacent to the vertices of the path. $v_{11}, v_{12}, v_{13}, \ldots, v_{1n}$ and $v_{51}, v_{52}, v_{53}, \ldots, v_{5n}$ are the corresponding pendent vertices. Then $S_1 = \{v_{11}, v_{12}, v_{13}, \ldots, v_{1n}, v_{41}, v_{42}, v_{43}, \ldots, v_{4n}\}, S_2 = \{v_{21}, v_{22}, v_{23}, \ldots, v_{2n}, v_{41}, v_{42}, v_{43}, \ldots, v_{4n}\}, S_3 = \{v_{21}, v_{22}, v_{23}, \ldots, v_{2n}, v_{51}, v_{52}, v_{53}, \ldots, v_{5n}\}$ are the only 3 γ-sets of G which contain all the n vertices of 2 rows. Then by putting $k = 1$ in the theorem 4.3.4 we get order of G is $3 + 2(nC_1 + nC_2 + nC_3 + \ldots, nC_{n-1})$ and each γ-set of G is of deg n except one which is of deg $2n$. □