Chapter 2

A Note on Disjoint Dominating Sets in Graphs

2.1 Introduction

In this chapter we study the existence of disjoint dominating sets and find partial solutions to some problems posed in [16]. In [16], S. M. Hedetniemi et al. introduced the concept of disjoint dominating sets in graphs. The disjoint domination number $\gamma\gamma(G) = \min\{|S_1| + |S_2| : S_1$ and S_2 are disjoint dominating sets of $G\}$. Two disjoint dominating sets whose union has cardinality $\gamma\gamma(G)$ is called a $\gamma\gamma$-pair of G.

2.2 Main results

Definition 2.2.1. The disjoint domination number $\gamma\gamma(G)$ is defined as $\gamma\gamma(G) = \min\{|S_1| + |S_2| : S_1$ and S_2 are disjoint dominating sets of $G\}$.
We say that a graph G is $\gamma\gamma$-minimum if it has two disjoint γ-sets, that is $\gamma\gamma(G) = 2\gamma(G)$. Similarly a graph G is called $\gamma\gamma$-maximum if $\gamma\gamma(G) = n$.

Theorem 2.2.2. If G is a graph with at least two universal vertices, then $\gamma\gamma(G) = 2$.

Proof. Let u and v be two universal vertices of the graph G. Then $\{u\}$ and $\{v\}$ are two disjoint dominating sets of G and hence $\gamma\gamma(G) = 2$. □

Theorem 2.2.3. If W_n is the wheel $C_n + K_1$, $\gamma\gamma(W_n) = 1 + \lceil \frac{n}{3} \rceil$.

Proof. The singleton set S containing the center of the wheel is the γ-set of W_n. Hence $\gamma(W_n) = 1.\gamma(C_n) = 2 \lceil \frac{n}{3} \rceil$ by proposition 1.1.29 and a γ-set of the cycle of W_n say S' dominates center of W_n. Also S and S' are disjoint. Hence $\gamma\gamma(W_n) = 1 + \lceil \frac{n}{3} \rceil$. □

Corollary 2.2.4. A wheel W_n is a $\gamma\gamma$-minimum graph $\Leftrightarrow n = 3$.

Proof. W_n is complete if and only if $n = 3$ and so the proof follows. □
Definition 2.2.5. A graph obtained from a wheel by attaching a pendent edge at each vertex of the \(n \)-cycle is a Helm and is denoted by \(H_n \). Thus \(H_n \) is a graph of order \(2n + 1 \).

Theorem 2.2.6. For a Helm \(H_n \), \(\gamma \gamma(H_n) = 2n \).

Proof. We know that the Helm \(H_n \) contains \(2n + 1 \) vertices. Let \(u_1, u_2, \ldots, u_n \) be the vertices of the cycle, \(v_1, v_2, v_3, \ldots, v_n \) be corresponding pendent vertices and \(u \) be the center. Then \(S = \{u_1, v_2, u_3, v_4, \ldots, u_{n-3}, v_{n-2}, u_{n-1}, v_n\} \) and \(S' = \{v_1, u_2, v_3, u_4, \ldots, v_{n-3}, u_{n-2}, v_{n-1}, u_n\} \) are two disjoint \(\gamma \)-sets of \(H_n \). Hence \(\gamma \gamma(H_n) = 2n \). \(\square \)

We note that \(H_n \) is a \(\gamma \gamma \)-minimum graph when \(n \) is even.

Definition 2.2.7. The Web graph is a graph obtained by joining the pendent vertices of a Helm \(H_n \) to form a cycle and then adding a single pendent edge to each vertex of this outer cycle. It is a graph of order \(3n + 1 \).

Theorem 2.2.8. For a web graph \(G \), \(\gamma \gamma(G) = 2n + 1 + \left\lceil \frac{n}{3} \right\rceil \).

Proof. The web graph contains 2 cycles of order \(n \), \(n \) pendent vertices and a center. Thus \(|V(G)| = 3n + 1 \).
Claim: $\gamma(G) = 2n + 1 + \left\lceil \frac{n}{3} \right\rceil$.

Let S be the γ-set of G obtained by taking the alternate vertices of the outer cycle, the alternate pendent vertices (not corresponding to the vertices taken in the outer cycle) and the center. Thus $|S| = n+1$. The other dominating set S' of G can be obtained by taking the remaining vertices of the outer cycle, the remaining pendent vertices and a γ-set of the inner cycle (not corresponding to the vertices in the outer cycle). Thus $|S'| = n + \left\lceil \frac{n}{3} \right\rceil$. Also $S \cap S' = \emptyset$. Thus $\gamma(G) = n+1 + n + \left\lceil \frac{n}{3} \right\rceil = 2n + 1 + \left\lceil \frac{n}{3} \right\rceil$. □

Definition 2.2.9. Grid graph is the Cartesian product of two paths.

Theorem 2.2.10. $\gamma(P_2 \times P_n) = 2\gamma(P_2 \times P_n) = 2 \left\lfloor \frac{k+2}{2} \right\rfloor$ for $k \geq 1$.

Proof. For $P_2 \times P_1$ and $P_2 \times P_2$, the result is obvious. Let $\{u_1, u_2, \ldots, u_n\}$ and $\{v_1, v_2, \ldots, v_n\}$ be the vertices of the two rows of the grid as shown in the figure.
Case (i). $n = 4k - 1, k \in \mathbb{N}$

$S = \{u_1, v_3, u_5, v_7, \ldots, u_{n-2}, u_{n-1}, v_n\}$ and $S' = \{v_1, u_3, v_5, u_7, \ldots, v_{n-2}, v_{n-1}, u_n\}$ are two disjoint γ-sets of $P_2 \times P_n$ with $|S| = |S'|$. Hence $\gamma\gamma(P_2 \times P_n) = 2\gamma(P_2 \times P_n)$.

Case (ii). $n = 4k, k \in \mathbb{N}$

$S = \{u_1, v_3, u_5, v_7, \ldots, v_{n-5}, u_{n-3}, v_{n-1}, u_n\}$ and $S' = \{v_1, u_3, v_5, u_7, \ldots, u_{n-5}, v_{n-3}, u_{n-1}, v_n\}$ are two disjoint γ-sets of $P_2 \times P_n$ with $|S| = |S'|$. Hence $\gamma\gamma(P_2 \times P_n) = 2\gamma(P_2 \times P_n)$.

Case (iii). $n = 4k + 1, k \in \mathbb{N}$

$S = \{u_1, v_3, u_5, v_7, \ldots, u_{n-4}, v_{n-2}, u_n\}$ and $S' = \{v_1, u_3, v_5, u_7, \ldots, v_{n-4}, u_{n-2}, v_n\}$ are two disjoint γ-sets of $P_2 \times P_n$ with $|S| = |S'|$. Hence $\gamma\gamma(P_2 \times P_n) = 2\gamma(P_2 \times P_n)$.

Case (iv). $n = 4k + 2, k \in \mathbb{N}$

$S = \{u_1, v_3, u_5, v_7, \ldots, u_{n-5}, v_{n-3}, u_{n-1}, v_n\}$ and $S' = \{v_1, u_3, v_5, u_7, \ldots, v_{n-5}, u_{n-3}, v_{n-1}, u_n\}$ are two disjoint γ-sets of $P_2 \times P_n$ with $|S| = |S'|$. Hence $\gamma\gamma(P_2 \times P_n) = 2\gamma(P_2 \times P_n)$.

From the above cases we get, $\gamma\gamma(P_2 \times P_n) = 2\gamma(P_2 \times P_n)$. □
Theorem 2.2.11.

\[
\gamma\gamma(P_3 \times P_n) = \begin{cases}
3 & \text{if } n = 1 \\
4 & \text{if } n = 2 \\
8 & \text{if } n = 4 \\
6k & \text{if } n = 4k - 1 \\
2\gamma(P_3 \times P_n) + 1 & \text{otherwise}
\end{cases}
\]

Proof. When \(n = 1, 2 \) and \(4 \) the result is obvious.

Let \(\{u_1, u_2, \ldots, u_n\}, \{v_1, v_2, \ldots, v_n\} \) and \(\{w_1, w_2, \ldots, w_n\} \) be the vertices of the three rows of the grid \(P_3 \times P_n \) as shown in the figure. In [20], it has been proved that \(\gamma(P_3 \times P_n) = \left\lfloor \frac{3n+4}{4} \right\rfloor \).

Case (i) \(n = 4k - 1, k \in \mathbb{N} \)

\(S = \{u_1, w_1, v_3, u_5, w_5, v_7, \ldots, u_{n-2}, w_{n-2}, v_n\} \) and \(S' = \{v_1, u_3, w_3, v_5, u_7, w_7, \ldots, v_{n-2}, u_{n-2}, u_n, w_n\} \) are two disjoint \(\gamma \)-sets of \(P_3 \times P_n \) with \(|S| =

\(|S'| = 3k. \text{ Hence } \gamma \gamma (P_3 \times P_n) = 6k.\)

Case (ii) \(n = 4k, k \in \mathbb{N} - \{1\}\)

\(S = \{u_1, w_1, v_3, u_5, w_5, v_7, \ldots, u_{n-3}, w_{n-3}, v_{n-1}, u_n, w_n\}\) and \(S' = \{v_1, u_3, w_3, v_5, u_7, w_7, \ldots, u_{n-5}, w_{n-5}, v_{n-3}, u_{n-1}, w_{n-1}, v_n\}\) are two disjoint \(\gamma\)-sets of \(P_3 \times P_n\) with \(|S| = \left\lfloor \frac{3k+4}{4} \right\rfloor\) and \(|S'| = \left\lfloor \frac{3k+4}{4} \right\rfloor + 1\). Hence \(\gamma \gamma (P_3 \times P_n) = 2\gamma (P_3 \times P_n) + 1.\)

Case (iii) \(n = 4k + 1, k \in \mathbb{N}\)

\(S = \{u_1, w_1, v_3, u_5, w_5, v_7, \ldots, v_{n-2}, u_n, w_n\}\) and \(S' = \{v_1, u_3, w_3, v_5, u_7, w_7, \ldots, u_{n-2}, w_{n-2}, v_n\}\) are two adjacent disjoint \(\gamma\)-sets of \(P_3 \times P_n\) with \(|S| = \gamma (P_3 \times P_n)\) and \(|S'| = \gamma (P_3 \times P_n) + 1\). Hence \(\gamma \gamma (P_3 \times P_3) = 2\gamma (P_3 \times P_n) + 1.\)

Case (iv) \(n = 4k + 2, k \in \mathbb{N}\)

\(S = \{u_1, w_1, v_3, u_5, v_7, \ldots, u_{n-1}, w_{n-1}, v_n\}\) and \(S' = \{v_1, u_3, w_3, v_5, u_7, w_7, \ldots, u_{n-3}, w_{n-3}, v_{n-1}, v_n\}\) are two disjoint \(\gamma\)-sets of \(P_3 \times P_n\) with \(|S| = \gamma (P_3 \times P_n) + 1\) and \(|S'| = \gamma (P_3 \times P_n)\). Hence \(\gamma \gamma (P_3 \times P_n) = 2\gamma (P_3 \times P_n) + 1.\)

\(\square\)

Theorem 2.2.12. \(\gamma \gamma (P_4 \times P_n) = 2\gamma (P_4 \times P_n).\)
Proof. \{u_1, u_2, \ldots, u_n\}, \{v_1, v_2, \ldots, v_n\}, \{w_1, w_2, \ldots, w_n\} and \{x_1, x_2, x_3, \ldots, x_n\} are the vertices of the 1st, 2nd, 3rd and 4th rows of the grid $P_4 \times P_n$ as shown in the figure. We have

$$\gamma(P_4 \times P_n) = \begin{cases} n + 1 & \text{if } n = 1, 2, 3, 5, 6, 9 \\ n & \text{otherwise} \end{cases}$$

Case(1): $n = 3k$

When $n = 3$, $S = \{w_1, u_2, v_3, x_3\}$ and $S' = \{v_1, x_2, u_3, w_3\}$ are two disjoint γ-sets. Hence $\gamma\gamma(P_4 \times P_3) = 2\gamma(P_4 \times P_3)$.

When $n = 6$, $S = \{v_1, x_2, u_3, w_4, v_5, u_6, x_6\}$ and $S' = \{w_1, u_2, x_3, v_4, u_5, x_5, w_6\}$ are two disjoint γ-sets. Hence $\gamma\gamma(P_4 \times P_6) = 2\gamma(P_4 \times P_6)$.

When $n = 9$, $S = \{u_1, x_1, v_2, w_3, u_4, x_5, v_6, x_7, u_8, w_9\}$ and $S' = \{v_1, x_2, u_3, w_4, u_5, x_6, v_7, w_8, u_9, x_9\}$ are two disjoint γ-sets. Hence $\gamma\gamma(P_4 \times P_9) = 2\gamma(P_4 \times P_9)$.
\(P_9) = 2\gamma(P_4 \times P_9)\).

When \(n = 12\), \(S = \{v_1, x_2, u_3, w_4, v_5, x_6, v_7, w_8, v_9, x_{10}, u_{11}, w_{12}\}\) and \(S' = \{w_1, u_2, x_3, v_4, w_5, u_6, x_7, v_8, w_9, u_{10}, x_{11}, v_{12}\}\) are two disjoint \(\gamma\)-sets. Hence \(\gamma\gamma(P_4 \times P_{12}) = 2\gamma(P_4 \times P_{12})\).

Subcase(1.i): \(n\) is odd, \(k = 5, 7, 9, \ldots\)

\(S = \{v_1, x_2, u_3, w_4, u_5, x_6, v_7, \ldots, w_{n-7}, u_{n-6}, x_{n-5}, v_{n-4}, w_{n-3}, u_{n-2}, x_{n-1}, v_n\}\) and \(S' = \{w_1, u_2, x_3, v_4, w_5, u_6, x_7, v_8, x_9, \ldots, w_{n-8}, v_{n-7}, x_{n-6}, u_{n-5}, w_{n-4}, v_{n-3}, x_{n-2}, u_{n-1}, w_n\}\) are two disjoint \(\gamma\)-sets. Hence \(\gamma\gamma(P_4 \times P_n) = 2\gamma(P_4 \times P_n)\).

Subcase(1.ii): \(n\) is even, \(k = 6, 8, 10, \ldots\)

\(S = \{v_1, x_2, u_3, w_4, u_5, x_6, v_7, x_8, v_9, \ldots, w_{n-8}, v_{n-7}, x_{n-6}, u_{n-5}, w_{n-4}, v_{n-3}, x_{n-2}, u_{n-1}, w_n\}\) and \(S' = \{w_1, u_2, x_3, v_4, x_5, u_6, w_7, u_8, x_9, \ldots, v_{n-8}, w_{n-7}, u_{n-6}, x_{n-5}, v_{n-4}, w_{n-3}, u_{n-2}, x_{n-1}, v_n\}\) are two disjoint \(\gamma\)-sets. Hence \(\gamma(P_4 \times P_n) = 2\gamma(P_4 \times P_n)\).

Case (2): \(n = 3k + 1\)

When \(n = 1\), \(S = \{u_1, w_1\}\) and \(S' = \{v_1, x_1\}\) are two disjoint \(\gamma\)-sets. Hence \(\gamma\gamma(P_4 \times P_n) = 2\gamma(P_4 \times P_n)\).

Subcase(2.i): \(n\) is odd, \(k = 2, 4, 6, \ldots\)

\(S = \{v_1, x_2, u_3, w_4, u_5, x_6, v_7, \ldots, x_{n-7}, u_{n-6}, x_{n-5}, v_{n-4}, w_{n-3}, u_{n-2}, x_{n-1}, v_n\}\) and \(S' = \{w_1, u_2, x_3, v_4, x_5, u_6, w_7, u_8, x_9, \ldots, u_{n-7}, w_{n-6}, u_{n-5}, x_{n-4}, v_{n-3}, x_{n-2}, u_{n-1}, w_n\}\) are two disjoint \(\gamma\)-sets. Hence \(\gamma\gamma(P_4 \times P_n) =\)
2\gamma(P_4 \times P_n).

Subcase(2.ii): n is even, $k = 1, 3, 5, \ldots$

$S = \{v_1, x_2, u_3, w_4, u_5, x_6, v_7, x_8, \ldots, u_{n-7}, w_{n-6}, u_{n-5}, x_{n-4}, v_{n-3}, x_{n-2}, u_{n-1}, w_n\}$ and $S' = \{w_1, u_2, x_3, v_4, x_5, u_6, w_7, u_8, \ldots, x_{n-7}, v_{n-6}, x_{n-5}, u_{n-4}, w_{n-3}, u_{n-2}, x_{n-1}, v_n\}$ are two disjoint γ-sets. Hence $\gamma\gamma(P_4 \times P_n) = 2\gamma(P_4 \times P_n)$.

Case(3): $n = 3k + 2$

When $n = 2$, $S = \{u_1, x_1, v_2\}$ and $S' = \{v_1, u_2, x_2\}$ are two disjoint γ-sets. Hence $\gamma\gamma(P_4 \times P_n) = 2\gamma(P_4 \times P_n)$.

When $n = 5$, $S = \{v_1, x_2, u_3, w_4, v_5, x_6\}$ and $S' = \{u_2, x_3, v_4, u_5, w_5\}$ are two disjoint γ-sets. Hence $\gamma\gamma(P_4 \times P_n) = 2\gamma(P_4 \times P_n)$.

When $n = 8$, $S = \{v_1, x_2, u_3, w_4, v_5, x_6, u_7, w_8\}$ and $S' = \{u_2, x_3, v_4, w_5, u_6, x_7, v_8\}$ are two disjoint γ-sets. Hence $\gamma\gamma(P_4 \times P_n) = 2\gamma(P_4 \times P_n)$.

Subcase(3.1): n is odd, $k = 3, 5, 7, \ldots$

$S = \{v_1, x_2, u_3, w_4, u_5, x_6, v_7, x_8, \ldots, v_{n-7}, u_{n-6}, x_{n-5}, v_{n-4}, w_{n-3}, u_{n-2}, x_{n-1}, v_n\}$ and $S' = \{w_1, u_2, x_3, v_4, x_5, u_6, w_7, u_8, \ldots, x_{n-6}, u_{n-5}, w_{n-4}, v_{n-3}, x_{n-2}, u_{n-1}, w_n\}$ are two disjoint γ-sets. Hence $\gamma\gamma(P_4 \times P_n) = 2\gamma(P_4 \times P_n)$.

Subcase(3.ii): n is even, $k = 4, 6, 8, \ldots$

$S = \{v_1, x_2, u_3, w_4, u_5, x_6, v_7, x_8, u_9, \ldots, x_{n-8}, v_{n-7}, x_{n-6}, u_{n-5}, w_{n-4}, v_{n-3}, x_{n-2}, u_{n-1}, w_n\}$ and $S' = \{w_1, u_2, x_3, v_4, x_5, u_6, w_7, u_8, x_9, \ldots, w_8, u_7, x_6, v_5, x_4, v_3, u_2, x_1, v_1\}$ are two disjoint γ-sets. Hence $\gamma\gamma(P_4 \times P_n) = 2\gamma(P_4 \times P_n)$.

28
\(u_{n-8}, w_{n-7}, u_{n-6}, x_{n-5}, v_{n-4}, w_{n-3}, u_{n-2}, x_{n-1}, v_n\) are two disjoint \(\gamma\)-sets. Hence \(\gamma\gamma(P_4 \times P_3) = 2\gamma(P_4 \times P_3)\). Thus from the above cases, \(\gamma\gamma(P_4 \times P_n) = 2\gamma(P_4 \times P_n)\). \(\square\)

Theorem 2.2.13. For any 2 integers \(m\) and \(n\) with \(n \geq 5, m \geq 2\) we can construct a tree \(T\) with \(\gamma\gamma(T) = n - m + 1\).

Proof. Let \(m\) and \(n\) be 2 integers with \(n \geq 4\) and \(m \geq 2\). Let \(u\) be the root of \(T\) which is a pendent vertex and \(m\) be the degree of the support \(v\) of \(u\). Let the neighbors of \(v\) other than \(u\) be \(u_1, u_2, u_3, \ldots, u_{m-1}\). Each \(u_i\) can have any number of neighbors say \(u_{ij}\) other than \(v\) where \(1 \leq i < m - 1\) and \(j \geq 1\) such that \(\sum_i \sum_j 1 = r\) and each \(u_{ijk}, k \geq 1\) such that \(\sum_i \sum_j \sum_k 1 = s\). Then \(\sum_i \sum_j 1 + \sum_i \sum_j \sum_k 1 + m + 1 = n\). We now construct two disjoint dominating sets of \(T, S\) and \(S'\). Without loss of generality let \(u \in S\). Then as \(v\) is adjacent to \(u, u \notin S', v \in S'\). Then \(u_{ij}, 1 \leq i \leq m - 1\) must be in \(S\). Since \(u_{ijk}\) are adjacent to \(u_{ij}, u_{ijk} \in S'\). Thus members of \(S\) are \(u\) and \(u'_{ijk}\). Therefore \(S\) is a dominating set of \(T\). As \(v \in S'\), it dominates \(u\) and \(u_1, u_2, u_3, \ldots, u_{m-1}\). Hence \(u, u_1, u_2, u_3, \ldots, u_{m-1} \notin S'\). Let \(u_{ijk} \in S'\). Then \(u'_{ijk}\) dominates \(u'_{ij}\). Thus the set \(S'\) consisting of the vertices \(v\) and \(u'_{ijk}\) is a dominating set of \(T\) disjoint from \(S\). There is no other dominating set disjoint
with S or S' with minimum cardinality as any dominating set should contain either u or v. Hence $\gamma\gamma(T) = |S \cup S'| = n - m + 1$. □

Theorem 2.2.14. For a n-star graph S_n, $\gamma\gamma(S_n) = 2\gamma(S_n)$ and consequently S_n is a $\gamma\gamma$-minimum graph.

Proof. We know that S_n is $(n - 1)$ regular. By Theorem 1.1.18, $\gamma(S_n) = (n - 1)!$ and S_n is domatically full. Also every class of domatic partition of S_n is a γ-set of S_n. Hence any two members of the domatic partition form a pair of disjoint dominating sets and so $\gamma\gamma(S_n) = 2\gamma(S_n)$. □

In [16], Hypercubes are conjectured to be $\gamma\gamma$-minimum for all $n \geq 2$. We give a partial solution to this conjecture.

Definition 2.2.15. [5] The n-cube Q_n is a graph whose vertex set is the set of all n-dimensional boolean vectors, two vertices being joined if and only if they differ in exactly one co-ordinate. We use the following notation. By (0) we mean the boolean vector with all coordinate 0. If $1 \leq i_1 < i_2 < \ldots < i_k \leq n$, we denote by (i_1, i_2, \ldots, i_k) the n-tuple having 1 in the coordinate i_1, i_2, \ldots, i_k and 0 elsewhere.
Example 2.2.16. \(\gamma \gamma(Q_n) = 2\gamma(Q_n) \) for \(1 \leq n \leq 7 \). \(\gamma \gamma(Q_1) = 2 \) since \(S = \{(1)\} \) and \(S' = \{(2)\} \) are two disjoint dominating sets of \(Q_1 \). \(\gamma \gamma(Q_2) = 4 \) since \(S = \{(1),(2)\} \) and \(S' = \{(0),(1,2)\} \) are two disjoint dominating sets of \(Q_2 \). \(\gamma \gamma(Q_3) = 4 \) since \(S = \{(0),(1,2,3)\} \) and \(S' = \{(1),(2,3)\} \) are two disjoint dominating sets of \(Q_3 \). \(\gamma \gamma(Q_4) = 8 \) since \(S = \{(1),(9,2),(3,4),(1,2,3,4)\} \) and \(S' = \{(3),(1,2),(2,4),(1,3,4)\} \) are two disjoint dominating sets of \(Q_4 \). \(\gamma \gamma(Q_5) = 14 \) since \(S = \{(0),(1,2),(1,3),(1,4,5),(2,3,4),(2,3,5),(2,3,4,5)\} \) and \(S' = \{(1),(2),(3),(4,5),(1,2,3,4),(1,2,3,5),(1,2,3,4,5)\} \) are two disjoint dominating sets of \(Q_5 \). \(\gamma \gamma(Q_6) = 24 \) since \(S = \{(0),(1,3),(2,3),(1,2,4),(1,5,6),(2,5,6),(3,4,5),(3,4,6),(1,2,4,5),(1,2,4,6),(3,4,5,6),(1,2,3,5,6)\} \) and \(S' = \{(5),(1,4),(2,6),(3,4),(1,2,3),(1,3,6),(2,4,5),(4,5,6),(1,2,5,6),(1,3,4,5),(2,3,5,6),(1,2,3,4,6)\} \) are two disjoint dominating sets of \(Q_6 \). \(\gamma \gamma(Q_7) = 32 \) since \(S = \{(0),(1,2,7),(1,3,4),(1,5,6),(2,3,5),(2,4,6),(3,6,7),(4,5,7),(1,2,3,6),(1,2,4,5),(1,3,5,7),(1,4,6,7),(2,3,4,7),(2,5,6,7),(3,4,5,6),(1,2,3,4,5,6,7)\} \) and \(S' = \{(1),(2,6),(3,4),(5,7),(2,3,7),(2,4,5),(3,5,6),(4,6,7),(1,2,3,5),(1,2,4,7),(1,3,6,7),(1,4,5,6),(1,2,3,4,6),(1,2,5,6,7),(1,3,4,5,7),(2,3,4,5,6,7)\} \) are two disjoint dominating sets of \(Q_7 \). Hence by [5] \(\gamma \gamma(Q_n) = 2\gamma(Q_n) \) for \(1 \leq n \leq 7 \).
In this connection, we propose the following conjecture.

Conjecture 2.2.17. Hypercubes Q_n are $\gamma\gamma$-minimum for $n \geq 8$.

Theorem 2.2.18. Let G be a graph without isolated vertices. Then $2 \leq \gamma\gamma(G) \leq p$. Lower bound is attained if and only if $G \cong K_n$ or G has at least two vertices of full degree.

Proof. Obviously $2 \leq \gamma\gamma(G) \leq p$. Suppose $\gamma\gamma(G) = 2$. Then there exists two disjoint dominating sets S and S' such that both have cardinality one. This is possible if and only if $G \cong K_n$ or G has at least two vertices of full degree. □

Definition 2.2.19. The trestled graph of index k denoted by $T_k(G)$ is a graph obtained from G adding k copies of K_2 corresponding to each edge uv of G and joining u and v to the respective end vertices of each K_2.

Theorem 2.2.20. If G is a trestled graph of index k of a cycle C_n then $\gamma\gamma(G) = (k + 1)n$ where $k \in \mathbb{N}$.

Proof. The trestled graph of a cycle C_n of index k contains $n + 2kn = (2k + 1)n$ vertices. The set of n vertices of the cycle C_n say S is a γ-set
of \(G \). The set of any one of the vertices of each of the newly added edge say \(S' \) is another minimum dominating set of \(G \) containing \(nk \) vertices. Also \(S \cap S' = \phi \). Hence \(\gamma\gamma(G) = (k + 1)n \). \(\square \)

Corollary 2.2.21. If \(G \cong T_1(C_n) \) then \(\gamma\gamma(G) = 2\gamma(G) \).

Theorem 2.2.22. If \(G \cong T_k(P_n) \) then \(\gamma\gamma(G) = n + k(n - 1) \) for \(k = 2, 3, 4, \ldots \).

Proof. The set of \(n \) vertices of the path \(P_n \) say \(S \) is a \(\gamma \)-set of \(T_k(P_n) \). Hence \(|S| = n \). \(P_n \) has \((n - 1) \) edges and corresponding to each edge there are \(k \) edges. The set of one of the vertices of these \(k(n - 1) \) edges say \(S' \) form a dominating set of \((T_k(P_n)) \) and \(S \cap S' = \phi \). Hence \(|S'| = k(n - 1) \) and so \(\gamma\gamma(T_k(P_n)) = n + k(n - 1) \). Thus \(\gamma\gamma(T_k(P_n)) = n + k(n - 1) \). \(\square \)

Theorem 2.2.23. \(\gamma\gamma(T_1(P_n)) = 2n \).

Proof. Clearly \(|V(T_1(P_n))| = 3n-2 \). Suppose the vertices are labeled as in the diagram.
Obviously $S_1 = \{v_1, v_{21}, v_{31}, v_{41}, \ldots, v_{n1}\}$ and $S_2 = \{v_{11}, v_{22}, v_{32}, \ldots, v_{n-1,2}, v_n\}$ are 2 disjoint γ-sets with $|S_1| = |S_2| = n$. Hence $\gamma\gamma(T_1(P_n)) = 2n$. □

Theorem 2.2.24. If $G \cong T_m(K_1,n))$ then $\gamma\gamma(T_m(K_1,n))) = n+1+mn$.

Proof. The set of $(n+1)$ vertices of the star say S dominates G and hence $|S| = n + 1$. $K_{1,n}$ has n edges and corresponding to each edge there are m edges. The set consisting of one vertex from each of the nk edges S' form an independent dominating set of G. Hence $|S'| = mn$. Also $S \cap S' = \phi$. Therefore $\gamma\gamma(T_m(K_{1,n})) = n+1+mn$. □

Corollary 2.2.25. $\gamma\gamma(T_1(K_{1,n})) = 2\gamma(T_1(K_{1,n}))$.

Proof. The $(n+1)$ vertices of $K_{1,n}$ dominates $T_1(K_{1,n})$. Hence $|S| = n + 1$. The set consisting of one vertex from each of the newly added edge of $T_1(K_{1,n})$ together with the other vertex of the last edge say S' form a dominating set of $T_1(K_{1,n})$ disjoint from S. Hence $|S'| = n + 1$ and so $\gamma\gamma(T_1(K_{1,n})) = 2(n + 1) = 2\gamma(T_1(K_{1,n}))$. □

Definition 2.2.26. The total graph $T(G)$ of a graph $G = (V, E)$ has vertices that correspond one to one with elements of $V \cup E$. Two
vertices in $T(G)$ are adjacent if and only if the corresponding elements are adjacent or incident in G.

Theorem 2.2.27.

$$
\gamma(T(P_n)) = \begin{cases}
2\gamma(T(P_n)) + 1 & \text{if } n \equiv 3 \pmod{5} \\
2\gamma(T(P_n)) & \text{otherwise}
\end{cases}
$$

Proof. Let $\{v_1, v_2, v_3, \ldots, v_n\}$ be the vertex set of P_n. As P_n contains n vertices, $T(P_n)$ contains $(2n-1)$ vertices say $v_1, e_1, v_2, e_2, v_3, \ldots, e_{n-1}, v_n$. It is easy to observe that $\gamma(T(P_n)) = \lceil \frac{2n-1}{5} \rceil$.

Case(i): $n \equiv 0 \pmod{5}$

$S = \{v_2, e_4, v_7, e_9, v_{12}, \ldots, v_{n-8}, e_{n-6}, v_{n-3}, e_{n-1}\}$ and $S' = \{e_1, v_4, e_6, v_9, e_{11}, \ldots, e_{n-9}, v_{n-6}, v_{n-4}, v_{n-1}\}$ are two disjoint γ-sets of $T(P_n)$. Hence $\gamma(T(P_n)) = 2\gamma(T(P_n))$.

Case(ii): $n \equiv 1 \pmod{5}$

$S = \{v_2, e_4, v_7, e_9, v_{12}, \ldots, e_{n-9}, v_{n-6}, e_{n-4}, v_{n-1}\}$ and $S' = \{e_1, v_4, e_6, v_9, e_{11}, \ldots, e_{n-7}, v_{n-4}, e_{n-2}, v_n\}$ are two disjoint γ-sets of $T(P_n)$. Hence $\gamma(T(P_n)) = 2\gamma(T(P_n))$.

Case(iii): $n \equiv 2 \pmod{5}$

$S = \{v_2, e_4, v_7, e_9, v_{12}, \ldots, e_{n-8}, v_{n-5}, e_{n-3}, v_{n-1}\}$ and $S' = \{e_1, v_4, e_6, v_9, e_{11}, \ldots, v_{n-8}, e_{n-6}, v_{n-3}, e_{n-1}\}$ are two disjoint γ-sets of $T(P_n)$. Hence
\[\gamma\gamma(T(P_n)) = 2\gamma(T(P_n)).\]

Case (iv): \(n \equiv 3 \pmod{5}\)

\[S = \{v_2, e_4, v_7, e_9, v_{12}, \ldots, e_{n-9}, v_{n-6}, e_{n-4}, v_{n-1}\}\]

is the \(\gamma\)-set of \(T(P_n)\) and is unique. \(S' = \{e_1, v_4, e_6, v_9, e_{11}, \ldots, e_{n-7}, v_{n-4}, e_{n-2}, v_n\}\) is the minimal dominating set of \(T(P_n)\) disjoint from \(S\) and \(|S'| = |S| + 1\).

Hence \(\gamma\gamma(T(P_n)) = 2\gamma(T(P_n)) + 1\).

Case (v): \(n \equiv 4 \pmod{5}\)

\[S = \{v_2, e_4, v_7, e_9, v_{12}, \ldots, v_{n-7}, e_{n-5}, v_{n-2}, e_{n-1}\}\]

and \(S' = \{e_1, v_4, e_6, v_9, e_{11}, \ldots, e_{n-8}, v_{n-5}, e_{n-3}, v_n\}\) are two disjoint \(\gamma\)-sets of \(T(P_n)\). Hence

\[\gamma(T(P_n)) = 2\gamma(T(P_n)).\]

\[\square\]

Theorem 2.2.28. \(\gamma\gamma(T(C_n)) = 2 \left\lceil \frac{2n}{5} \right\rceil\).

Proof. \(T(C_n)\) contains \(2n\) vertices and each vertex is of degree 4 as each vertex of \(T(C_n)\) is incident with two vertices and two edges of \(C_n\). Since \(T(C_n)\) has \(2n\) vertices, we can construct two disjoint dominating sets \(S\) and \(S'\) of \(T(C_n)\) in such a way that no two vertices of either \(S\) or \(S'\) dominates the same vertex. Thus \(|S| = |S'| = \left\lceil \frac{2n}{5} \right\rceil\) and therefore

\[\gamma\gamma(T(C_n)) = 2 \left\lceil \frac{2n}{5} \right\rceil.\]

\[\square\]

Theorem 2.2.29. \(\gamma\gamma(T(K_{1,n})) = n + 1\).
Proof. Let v be the center and $v_1, v_2, v_3, \ldots, v_{n-1}, v_n$ be the pendant vertices of $K_{1,n}$. Then $T(K_{1,n})$ contains $(2n + 1)$ vertices. v is the universal vertex of $T(K_{1,n})$. Hence $S = \{v\}$ is the γ-set of $T(K_{1,n})$ and $S' = \{v_1, v_2, v_3, \ldots, v_{n-1}, v_n\}$ is a minimal dominating set of $T(K_{1,n})$. Also $S \cap S' = \emptyset$ and $|S'| = n$. Any minimal dominating set other than S contains n vertices. Hence $\gamma(T(K_{1,n})) = n + 1$.

In [16] “when is $\gamma(G) + \gamma(\overline{G}) = n + 4$? ” was posed as an open problem. We observe that if $G \cong C_4$ or a connected graph in which every vertex is a leaf or a stem then $\gamma(G) + \gamma(\overline{G}) = n + 4$. □

Example 2.2.30. The path P_n with $n = 3k + 2, k \in \mathbb{N}$ has $\gamma\gamma(P_n) = \frac{2(n+1)}{3}$.

$\gamma\gamma(P_n) = 2\gamma(P_{3k+2}) = 2(k + 1) = 2\left(\frac{(n-2)}{3} + 1\right) = \frac{2n+2}{3} = \frac{2(n+1)}{3}$.

This example gives a partial answer to the question “for which class of trees T is $\gamma\gamma(T) = \frac{2(n+1)}{3}$.”

We also see that the cycle C_n with $n = 3k + 2, k \in \mathbb{N}$ has $\gamma(C_n) = \frac{2(n+1)}{3}$. For, $\gamma\gamma(C_n) = \gamma\gamma(C_{3k+2}) = 2 \left[\frac{3k+2}{3}\right] = 2(k + 1) = \frac{2(n+1)}{3}$.