Contents

1 Introduction
 1.1 Discovery of Cosmic Rays 1
 1.2 Extensive Air Showers 4
 1.3 Basic Considerations of Cosmic Rays and EAS 7
 1.4 EAS Detectors 7
 1.5 Measurement and Tools for study of EAS Phenomena 8
 1.6 Constraints in Measurement of EAS Phenomena and Application of Artificial Neural Network (ANN)s 10
 1.6.1 Research Problem 11
 1.6.2 Scope of the Study 13
 1.7 Research Objective 13
 1.8 Research Contribution 13
 1.9 Organization of the Thesis 14

2 Artificial Neural Network (ANN): Basic Considerations 17
 2.1 Basic Considerations of Artificial Neural Network (ANN) ... 17
 2.1.1 The Biological Model of ANN 18
 2.1.2 Learning Algorithms 19
 2.1.3 Network Architecture 20
 2.2 Prediction and Classification using Artificial Neural Network (ANN)s 23
 2.3 Application of Error Back Propagation for ANN training ... 24
 2.4 Recurrent Neural Network 27
 2.4.1 Learning Algorithms: 28
 2.5 Probabilistic Neural Network (PNN) 37
 2.5.1 Architecture of a PNN Network 38
 2.5.2 Derivation of the Probabilistic Neural Network from Parzen Windows Classifier 39
 2.6 Self Organizing Feature Map (SOFM) 41
 2.6.1 Competitive Learning and Self Organizing Feature Map (SOFM) 43

3 Application of Multi Layer Perceptron (MLP) for Shower Size Prediction 49
 3.1 Basic considerations of the ANN 49
 3.1.1 Multi Layered Perceptron Based Learning 50
6.3.5 Dimensionality Reduction using Kernel PCA: 102
6.4 Independent Component Analysis (ICA) Approach of Dimensionality Reduction 104
 6.4.1 Definition of ICA: 104
 6.4.2 Dimensionality Reduction using ICA 105
 6.4.3 Selection of Dominant Feature Vectors: 107
6.5 Experimental Details and Results 107
6.6 Conclusion 109

7 Conclusion and Future Direction 111
 7.1 Conclusion 111
 7.2 Future Direction 113

Bibliography 115