Contents

Declaration ii
Certificate iii
List of figures xii
List of tables xvii
Abstract 1

1. Soft materials and characterization techniques 3
 1.1 Soft Materials 3
 1.2 Introduction to rheology 3
 1.3 Microrheology - Basic principles 5
 1.3.1 Reynolds number 5
 1.3.2 Theory of Brownian motion 6
 1.3.3 Single and two point microrheology 7
 1.3.4 Precautions for microrheology 13
 1.4 Classification of soft materials 14
 1.4.1 Colloidal Suspensions 14
 1.4.2 Soft Glassy Materials 14
 1.4.3 Polymer Networks 14
 1.4.4 Biological samples 15
 1.5 Techniques for characterization of soft materials 16
 1.5.1 Dynamic Light Scattering (DLS) 16
 1.5.2 X-ray Photon Correlation Spectroscopy (XPCS) 16
 1.5.3 Diffusing Wave Spectroscopy 17
 1.5.4 Optical Tweezer (OT) 17
 1.5.5 Laser Deflection Particle Tracking (LDPT) 18
 1.5.6 Video Microscopy (VM) 18
 1.5.7 Small Angle X-ray Scattering (SAXS) 19
 1.6 Active and non linear microrheology 19
1.7 References

2. Optical tweezers

2.1 Physics of optical tweezers

2.1.1 Mie Regime

2.1.2 Rayleigh regime

2.2 Design and Construction of dual optical tweezer

2.2.1 Trapping laser

2.2.2 Microscope objective

2.2.3 Tracking laser

2.2.4 θ_x, θ_y tilting mirror

2.2.5 Dichroic mirrors

2.2.6 Vibration isolation system

2.2.7 XYZ Piezo stage

2.2.8 Imaging system

2.2.9 Quadrant photo detectors

2.2.10 Data acquisition (DAQ) system

2.3 Laser power calibration

2.4 Construction of dual optical tweezer

2.4.1 Signal measurement through quadrant photo detector

2.5 Brownian motion and power spectra

2.6 Power spectral density analysis of measured data

2.7 References

3. Rheological behavior of Tasar Silk

3.1 Introduction

3.2 Sample preparation

3.3 Measurement techniques

3.3.1 Optical tweezer based technique

3.3.2 Video microscopy and calibration for microrheology

3.3.3 Calibration of the tweezer setup
3.4 Results and discussion 52
3.5 Conclusions 56
3.6 References 56

4. Bacterial dynamics, characterization of agro bacterial growth and antimicrobial activity of silver nanoparticles 58

4.1 Bacterial dynamics 58
 4.1.1 Bacterial suspensions for a study of collective dynamics and microrheology 59
 4.1.2 Theory 59
 4.1.3 Microrheology of active bacterial suspensions 62
 4.1.4 Bacterial activity 63

4.2 Characterization of agro bacterial growth and activity 64
 4.2.1 Sample preparation 65
 4.2.2 Growth measurement using Optical tweezer 65
 4.2.3 Cell count determination using Haemocytometer 66

4.3 Characterization of antimicrobial activity of silver nanoparticles 68
 4.3.1 Silver Nanoparticles 68
 4.3.2 Experimental details 69

4.4 Conclusions 72
4.5 References 72

5. Characterization of non symmetric micro rotors in an optical tweezer 74

5.1 Introduction 74

5.2 Experimental details 76
 5.2.1 Analysis of rotation from QPD measurements 76
 5.2.2 Dependence of presence of harmonics on rotation speed 78
 5.2.3 Theoretical model 79

5.3 VM analysis 83

5.4 Measurement of laser induced torque on the rotor 84

5.5 Measurement of rotational frequency of a trapped RBC 85
5.6 Conclusions

5.7 References

6. A pair of trapped beads in an optical tweezer - Analysis through simultaneous forward and back scattering techniques

6.1 Introduction

6.2 Experimental techniques

6.2.1 Simultaneous forward and back scattering detection

6.2.2 Power spectral density analysis

6.3 Simulation of projected area of a pair of trapped beads

6.3.1 Time average approach

6.3.2 Ensemble average approach

6.4 Estimation of correlation coefficient due to measurement cross talk

6.5 Analysis on a pair of trapped beads

6.5.1 Analysis through Correlation function

6.5.2 Analysis through Correlation coefficient

6.5.3 Analysis through corner frequency difference

6.6 Simultaneous two side (multiple views) imaging

6.7 Conclusions

6.8 References

7. Conclusions and Outlook

Appendix A-LabVIEW programs

A.1 Alignment of quadrant photo detector before acquiring the data

A.2 Program to acquire the data through QPD

A.3 Program to calculate the PSD from the fluctuation data obtained from Quadrant photo detector

A.4 Program to calculate loss and storage moduli from correlated PSD data

Appendix B-Publications