TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>XI</td>
</tr>
<tr>
<td>List of Figures</td>
<td>XII-XVIII</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>XIX-XX</td>
</tr>
<tr>
<td>Abstract</td>
<td>XXI-XXII</td>
</tr>
<tr>
<td>CHAPTER 1. INTRODUCTION</td>
<td>1-9</td>
</tr>
<tr>
<td>1.1. Antimicrobial peptides (AMPs)</td>
<td>2</td>
</tr>
<tr>
<td>1.1.1. Selectivity</td>
<td>3</td>
</tr>
<tr>
<td>1.1.2. Mode of Action</td>
<td>3</td>
</tr>
<tr>
<td>1.1.2.1. The carpet model</td>
<td>5</td>
</tr>
<tr>
<td>1.1.2.2. The barrel-stave model</td>
<td>5</td>
</tr>
<tr>
<td>1.1.2.3. The toroidal pore model</td>
<td>6</td>
</tr>
<tr>
<td>1.1.2.4. Alternative mode of action</td>
<td>6</td>
</tr>
<tr>
<td>1.1.3. Resistance to AMPs</td>
<td>7</td>
</tr>
<tr>
<td>1.1.4. Potential as drug candidate</td>
<td>8</td>
</tr>
<tr>
<td>1.2. Lipopeptides</td>
<td>9</td>
</tr>
<tr>
<td>CHAPTER 2. REVIEW OF LITERATURE</td>
<td>10-20</td>
</tr>
<tr>
<td>2.1. Short lipopeptides</td>
<td>10</td>
</tr>
<tr>
<td>2.2. Small cationic peptidomimetics</td>
<td>13</td>
</tr>
<tr>
<td>CHAPTER 3. PURPOSE OF THE WORK</td>
<td>21-23</td>
</tr>
<tr>
<td>3.1. Motivation</td>
<td>21</td>
</tr>
<tr>
<td>3.2. Objectives</td>
<td>22</td>
</tr>
<tr>
<td>CHAPTER 4. MATERIALS AND METHOD</td>
<td>24-119</td>
</tr>
<tr>
<td>4.1. Chemicals and reagents</td>
<td>24</td>
</tr>
<tr>
<td>4.2. Synthesis and characterization</td>
<td>25</td>
</tr>
<tr>
<td>4.2.1. Method for the synthesis of short lipopeptides</td>
<td>25</td>
</tr>
<tr>
<td>4.2.2. Spectra</td>
<td>30</td>
</tr>
<tr>
<td>--</td>
<td>----</td>
</tr>
<tr>
<td>4.2.3. Method for the synthesis of 3-ABA based peptidomimetics using Arginine and Tryptophan</td>
<td>69</td>
</tr>
<tr>
<td>4.2.4. Method for the synthesis of 3-ABA based peptidomimetics using Ornithine and Tryptophan</td>
<td>74</td>
</tr>
<tr>
<td>4.2.5. Method for the synthesis of 3-ABA based peptidomimetics by replacing Tryptophan with Phenylalanine</td>
<td>77</td>
</tr>
<tr>
<td>4.2.6. Method for the synthesis of linear peptides without incorporating 3-ABA</td>
<td>79</td>
</tr>
<tr>
<td>4.2.7. Spectra</td>
<td>81</td>
</tr>
<tr>
<td>4.3. Biological evaluation</td>
<td>111</td>
</tr>
<tr>
<td>4.3.1. Antibacterial screening</td>
<td>111</td>
</tr>
<tr>
<td>4.3.1.1. Strains</td>
<td>111</td>
</tr>
<tr>
<td>4.3.1.2. Method for MIC determination</td>
<td>112</td>
</tr>
<tr>
<td>4.3.2. Antifungal Screening</td>
<td>112</td>
</tr>
<tr>
<td>4.3.2.1. Strains</td>
<td>112</td>
</tr>
<tr>
<td>4.3.2.2. Method for MIC determination</td>
<td>112</td>
</tr>
<tr>
<td>4.3.3. Cytotoxicity study</td>
<td>113</td>
</tr>
<tr>
<td>4.3.3.1. Hemolytic assay</td>
<td>113</td>
</tr>
<tr>
<td>4.3.3.2. Cytotoxicity against Human keratinocytes (HaCaT cells)</td>
<td>113</td>
</tr>
<tr>
<td>4.3.3.2.1. Propagation of HaCaT Cell culture</td>
<td>113</td>
</tr>
<tr>
<td>4.3.3.2.2. MTT assay</td>
<td>113</td>
</tr>
<tr>
<td>4.3.4. Bactericidal kinetic study</td>
<td>114</td>
</tr>
<tr>
<td>4.3.5. Membrane interaction study using membrane models</td>
<td>114</td>
</tr>
<tr>
<td>4.3.5.1. Preparation of calcein encapsulated liposomes</td>
<td>114</td>
</tr>
<tr>
<td>4.3.5.2. Calcein dye leakage assay</td>
<td>115</td>
</tr>
<tr>
<td>4.3.6. Fluorescence microscopy</td>
<td>115</td>
</tr>
<tr>
<td>4.3.7. Microscopic visualization</td>
<td>116</td>
</tr>
<tr>
<td>4.3.7.1. Scanning Electron Microscopy (SEM)</td>
<td>116</td>
</tr>
<tr>
<td>4.3.7.2. Transmission Electron Microscopy (TEM)</td>
<td>116</td>
</tr>
<tr>
<td>4.3.8. DNA binding study</td>
<td>117</td>
</tr>
<tr>
<td>4.3.8.1. Isolation of bacterial plasmid DNA</td>
<td>117</td>
</tr>
<tr>
<td>4.3.8.2. Gel retardation assay</td>
<td>117</td>
</tr>
<tr>
<td>4.3.9. Resistance development study</td>
<td>118</td>
</tr>
<tr>
<td>4.3.10. Stability study</td>
<td>118</td>
</tr>
<tr>
<td>4.3.10.1. Proteolytic digestion assay</td>
<td>118</td>
</tr>
<tr>
<td>4.3.10.2. Plasma stability study</td>
<td>119</td>
</tr>
<tr>
<td>CHAPTER 5. RESULTS AND OBSERVATIONS</td>
<td>120-145</td>
</tr>
<tr>
<td>5.1. Short lipopeptides</td>
<td>120</td>
</tr>
<tr>
<td>5.1.1. Design and synthesis</td>
<td>120</td>
</tr>
<tr>
<td>5.1.2. Antibacterial activity</td>
<td>120</td>
</tr>
<tr>
<td>5.1.3. Antifungal activity</td>
<td>125</td>
</tr>
<tr>
<td>5.1.4. Cytotoxicity</td>
<td>128</td>
</tr>
<tr>
<td>5.1.5. Bactericidal kinetics</td>
<td>129</td>
</tr>
<tr>
<td>5.1.6. Biomembrane interaction study using artificial membranes</td>
<td>130</td>
</tr>
<tr>
<td>5.1.7. Surface disruption effect of lead lipopeptide in intact bacterial cells</td>
<td>131</td>
</tr>
<tr>
<td>5.1.8. DNA binding assay</td>
<td>132</td>
</tr>
<tr>
<td>5.1.9. Resistance development study</td>
<td>133</td>
</tr>
<tr>
<td>5.1.10. Evaluation of the proteolytic stability of LP16</td>
<td>134</td>
</tr>
<tr>
<td>5.2. Small cationic peptidomimetics</td>
<td>135</td>
</tr>
<tr>
<td>5.2.1. Design and synthesis</td>
<td>135</td>
</tr>
<tr>
<td>5.2.2. Antibacterial activity</td>
<td>136</td>
</tr>
<tr>
<td>5.2.3. Cytotoxicity</td>
<td>138</td>
</tr>
<tr>
<td>5.2.4. Bactericidal kinetic assay</td>
<td>139</td>
</tr>
<tr>
<td>5.2.5. Calcein dye leakage</td>
<td>140</td>
</tr>
<tr>
<td>5.2.6. Fluorescence microscopy</td>
<td>141</td>
</tr>
<tr>
<td>5.2.7. Resistance study</td>
<td>143</td>
</tr>
<tr>
<td>5.2.8. Proteolytic stability</td>
<td>143</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.2.9. Plasma stability study</td>
<td>144</td>
</tr>
<tr>
<td>CHAPTER 6. DISCUSSION</td>
<td>146-154</td>
</tr>
<tr>
<td>6.1. Short lipopeptides</td>
<td>146</td>
</tr>
<tr>
<td>6.2. Small cationic peptidomimetics</td>
<td>149</td>
</tr>
<tr>
<td>CHAPTER 7. CONCLUSION AND OUTLOOK</td>
<td>155-156</td>
</tr>
<tr>
<td>7.1. Conclusion</td>
<td>155</td>
</tr>
<tr>
<td>7.2. Outlook</td>
<td>156</td>
</tr>
<tr>
<td>CHAPTER 8. REFERENCES</td>
<td>157-168</td>
</tr>
</tbody>
</table>