CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Nanostructured Materials</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Properties of Nanostructured Materials</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Applications of Nanostructured Materials</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>Iron Oxides</td>
<td>9</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Basic structures of some of the iron oxides</td>
<td>10</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Applications of iron oxides</td>
<td>14</td>
</tr>
<tr>
<td>1.5</td>
<td>Ferric Oxides</td>
<td>15</td>
</tr>
<tr>
<td>1.5.1</td>
<td>α-Fe₂O₃</td>
<td>15</td>
</tr>
<tr>
<td>1.5.2</td>
<td>β-Fe₂O₃</td>
<td>17</td>
</tr>
<tr>
<td>1.5.3</td>
<td>γ-Fe₂O₃</td>
<td>17</td>
</tr>
<tr>
<td>1.5.4</td>
<td>ε-Fe₂O₃</td>
<td>19</td>
</tr>
<tr>
<td>1.6</td>
<td>Present Work</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>FERRIC OXIDES</td>
<td>39</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>39</td>
</tr>
<tr>
<td>2.2</td>
<td>Synthetic Methods</td>
<td>41</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Precipitation methods</td>
<td>41</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Microemulsion</td>
<td>43</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Thermal decomposition</td>
<td>44</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Hydrothermal synthesis</td>
<td>45</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Solvothermal synthesis</td>
<td>46</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Sol-gel method</td>
<td>47</td>
</tr>
<tr>
<td>2.2.7</td>
<td>Surfactant mediated /template synthesis</td>
<td>48</td>
</tr>
<tr>
<td>2.2.8</td>
<td>Electrochemical methods</td>
<td>49</td>
</tr>
<tr>
<td>2.2.9</td>
<td>Aerosol/vapour methods</td>
<td>50</td>
</tr>
</tbody>
</table>
2.2.10 Sonochemical reactions 50
2.2.11 Microwave method 51
2.2.12 Chemical vapour deposition 52
2.2.13 Arc discharge method 53
2.2.14 Laser pyrolysis 54
2.2.15 Combustion method 55

2.3 Properties 56
2.3.1 Structure, morphology and phase purity 56
2.3.2 Thermally induced phase transformations 57
2.3.3 Optical properties 60
2.3.4 Magnetic properties 61
2.3.5 Electrical properties 62
2.3.6 Gas sensing properties 63
2.3.7 Electrochemical properties 64

2.4 Applications 65
2.4.1 Industrial applications 65
2.4.2 Environmental applications 66
2.4.3 Catalytic applications 67
2.4.4 Analytic applications 68
2.4.4 Biological applications 69

References 70

3. SYNTHESIS OF NANOSTRUCTURED MATERIALS 84
3.1 General Methods of Preparation 84
3.2 Precipitation Method 86
3.2.1 Nucleation 87
3.2.2 Crystal growth 88
3.3 Microemulsion Method 89
3.4 Thermal Decomposition 90
3.5 Hydrothermal Synthesis 91
3.6 Solvothermal Method

3.7 Sol-gel Method

3.8 Template Synthesis

3.9 Electrochemical Synthesis

3.10 Aerosol/Vapour-Phase Method

3.11 Chemical Reduction

3.12 Sonoochemical Method

3.13 Combustion Method

3.14 Chemical Vapour Deposition

3.15 Arc Discharge

3.16 Laser Pyrolysis

3.17 Microwave Method

3.17.1 Mechanism of microwave heating

3.17.2 Selection of solvents used in microwave-assisted techniques

3.17.3 Novelty of microwave-solvothermal method

References

4. CHARACTERIZATION TECHNIQUES

4.1 Structural and Chemical Characterizations

4.1.1 Powder X-ray diffraction (XRD)

4.1.2 Fourier transform infrared spectroscopy (FTIR)

4.1.3 Thermal analyses (TGA and DSC)

4.1.4 Scanning electron microscopy (SEM)

4.1.5 Energy dispersive X-ray spectroscopy (EDX)

4.1.6 Transmission electron microscopy (TEM)

4.2 UV-Vis Absorbance and Reflectance Spectroscopy

4.3 Magnetism and Magnetic Properties

4.3.1 Introduction to magnetism

4.3.2 Classification of magnetic materials
7. SUMMARY, CONCLUSIONS AND FUTURE SCOPE 221

7.1 Summary and Conclusions 221
7.2 Future Scope 224

APPENDIXES 225

A. Resume of the Candidate 225
B. Publications / Presentations by the candidate 226
C. The Observed Electrical Parameters 229
D. Paper Published in Materials Letters (4 Pages) 229
E. Paper Published in Journal of Solid State Chemistry (14 Pages) 229
F. Paper Published in IJRET (12 Pages) 229