CONTENTS

CHAPTER I

INTRODUCTION

1.1 **PREFACE**
1.2 **REVIEW OF LITERATURE**
1.2.1 Banana Wastes
1.2.2 Utilisation of Fruit Parts
1.2.3 Non-Fruit Plant Parts
1.2.4 Production of Exoenzymes by SSF
1.2.5 *Bacillus* Sp. and their α-Amylases
1.2.6 *Aeromonas* Sp. and their α-Amylases
1.2.7 Cellulase Production by *Bacillus* Sp. and *Aeromonas* Sp.

1.3 **SCOPE OF THE PRESENT STUDY**

CHAPTER II

MATERIALS AND METHODS

2.1 Banana
2.1.1 Taxonomic Position
2.1.2 Banana Plant Parts
2.2 Substrate
2.2.1 Proximate Analysis
2.2.1.1 Moisture Content
2.2.1.2 Carbohydrate
2.2.1.3 Reducing Sugar
2.2.1.4 Crude Protein
2.2.1.5 Crude Fat
2.2.1.6 Crude Fibre
2.2.1.7 Mineral Matter
2.3 Biodegradation of Banana Fruit Stalk by Commensal Microflora
2.3.1 Biochemical Analysis
2.3.2 Enzyme Extraction
2.3.3 Enzyme Assays
2.3.3.1 α-Amylase
2.3.3.2 Cellulase
2.3.3.3 Protease
2.3.4 Enzyme Protein
2.3.5 Bacteriological Analysis
2.3.5.1 Total Heterotrophic Bacterial population
Isolation and Maintenance of Culture 46
Identification of Bacteria 47
Screening of Potential Strains for Enzyme Production 47
Preliminary Screening of Potential Strains 47
Amylase 48
Cellulase 49
Caseinase 50
Gelatinase 51
Lipase 52
Pectinase 53
Secondary Screening 54
Media 54
Preparation of Inoculum, and Inoculation Procedures 55
Measurement of Growth 56
Enzyme Extraction 56
Enzyme Protein 57
Selection of Strains 57
Growth Studies 58
Optimisation of the Growth Conditions for Maximal Growth and Enzyme Production 58
Media 59
Preparation of Inoculum and Inoculation Procedures 59
Measurement of Growth 59
Enzyme Assay 59
Enzyme Protein 59
Growth Curve 59
Production of Exoenzymes Employing SSF using Potential Strains 61
Preparation of the Substrate 61
Cellulose 61
Starch 63
Media 65
Preparation of Solid State Fermentation (SSF) Medium 65
Inoculation and Incubation 66
Enzyme Recovery and Enzyme Assay 66
Effect of Operational Parameters on Enzyme Production by SSF 66
Pretreatment of the Substrate 67
Steaming 67
Alkali Treatment 67
Acid Hydrolysis 68
2.6.6.2 Effect of Initial Moisture Content of the Medium 68
2.6.6.3 Effect of Particle Size of BFS 69
2.6.6.4 Effect of Incubation Temperature 69
2.6.6.5 Effect of pH 69
2.6.6.6 Effect of Additional Substrate Concentration 70
2.6.6.7 Effect of Carbon Sources 70
2.6.6.8 Effect of Nitrogen Sources 70
2.6.6.9 Effect of Salts 71
2.6.6.10 Effect of Inoculum Concentration 71
2.6.6.11 Effect of Incubation Time 71
2.6.7 Optimisation of Process Parameters that influence Extraction and Recovery of Enzymes 72
2.6.7.1 Drying Temperature 73
2.6.7.2 Extraction Medium 73
2.6.7.3 pH of Extraction Medium 74
2.6.7.4 Ratio of Solid Substrate to Buffer 74
2.6.7.5 Effect of Contact Temperature 74
2.6.7.6 Effect of Contact Time 75
2.7 Production of Exoenzymes by Bacteria using Wheat Bran (WB) as Solid Substrate under SSF 75
2.8 Enzyme Production by Bacteria under Slurry Fermentation (SLF) 76
2.9 Enzyme Production by Bacteria under Submerged Fermentation (SmF) 76
2.10 Purification of Enzyme 78
2.10.1 (NH4)2SO4 Fractionation 78
2.10.2 Dialysis 79
2.10.3 Column Chromatography 80
2.10.4 SDS-Polyacrylamide Gel Electrophoresis 80
2.10.4.1 Preparation of Reagents 80
2.10.4.2 Procedure 82
2.10.4.3 Molecular Weight Determination 86
2.11 Characterisation of α-amylase 86
2.11.1 Effect of pH on Activity and Stability of the Enzymes 87
2.11.2 Effect of Temperature on Activity and Stability of Enzyme 89
2.11.3 Effect of Substrate Concentration on Activity of the Enzyme 89
2.11.4 Effect of Cations on the Activity of Enzyme 89
2.11.5 Effect of other Inhibitors on Enzyme Activity 90
CHAPTER III RESULTS 91-124

3.1 Changes in the Proximate Composition of Banana Fruit Stalk during Fermentation under Uncontrolled Condition

3.2 Bacteriological Changes in the BFS during Fermentation under Uncontrolled Conditions

3.3 Recovery of Exoenzymes from Fermented Banana fruit Stalk Wastes under Uncontrolled Fermentation

3.4 Selection of Potential Strain for Enzyme Production

3.5 Growth Studies

3.5.1 pH

3.5.2 Temperature

3.5.3 Substrate Concentration

3.5.4 NaCl Concentration

3.5.5 Carbon Sources

3.5.6 Nitrogen Sources

3.5.7 Inoculum Concentration

3.5.8 Incubation Time

3.5.9 Growth Curve

3.6 Production of α-Amylase and Cellulase Employing SSF by Bacteria

3.6.1 Pretreatment of Substrate on Exoenzyme Production under SSF

3.6.1.1 Effect of Steaming

3.6.1.2 Effect of Alkali Treatment

3.6.1.3 Effect of Acid Treatment

3.6.2 Effect of Moisture Content

3.6.3 Effect of Particle Size

3.6.4 Effect of pH

3.6.5 Effect of Incubation Temperature

3.6.6 Effect of Substrate Concentration

3.6.7 Effect of NaCl Concentration

3.6.8 Effect of Carbon Sources

3.6.9 Effect of Nitrogen Sources

3.6.10 Effect of Inoculum Concentration

3.6.11 Effect of Incubation Time

3.7 Optimisation of Extraction Parameters for Enhanced Recovery of the Enzyme Produced by SSF

3.7.1 Drying Temperature

3.7.2 Extraction Media

3.7.3 pH of Extraction Medium
3.7.4 Ratio of Banana Fruit Stalk Medium to Buffer
3.7.5 Effect of Contact Temperature
3.7.6 Effect of Contact Time
3.8 Comparative Evaluation of Banana Fruit Stalk and Wheat Bran as Solid Substrate for α-amylase and Cellulase Production by Bacteria Through SSF
3.9 Enzyme Production by Mixed Solid Substrates
3.10 Evaluation of Solid, Slurry and Submerged Fermentation for Enzyme Production
3.11 Purification of α-amylase
3.12 Enzyme Characteristics
3.12.1 Effect of pH on the Activity and Stability of α-amylase
3.12.2 Effect of Temperature on the Activity and Stability of α-amylase
3.12.3 Effect of Substrate Concentration on the Activity of α-amylase
3.12.4 Effect of Cations on α-amylase Activity
3.12.6 Effect of Other Inhibitors on the α-amylase Activity

CHAPTER IV DISCUSSION 202-230
Conclusion 230

CHAPTER V SUMMARY 231-240

BIBLIOGRAPHY 258