CONTENTS

LIST OF TABLES

LIST OF FIGURES

LIST OF PLATES

1. INTRODUCTION

Scope of the present study 6

2. REVIEW OF LITERATURE

2.1. Nitrogen Fixers 8

2.2. Phosphate Solubilizers 11

2.3. Biology and Ecology of *Azospirillum* and PSB 12

 2.3.1. Biology of *Azospirillum* 13

 2.3.2. Biology of PSB 17

2.4. Ecology of *Azospirillum* and PSB 22

2.5. Mechanism of Nitrogen Fixation 24

2.6. Mechanism of Phosphate Solubilization 25

2.7. Plant Growth Promotion 26

 2.7.1. Plant growth-promoting rhizobacteria 26

2.8. Biodiversity 29

2.9. Mass Multiplication 31

2.10. Organic farming 34

3. MATERIALS AND METHODS

3.1. Chemicals and glassware 35

3.2. Cleaning of glassware 35

3.3. Sterilization 35

3.4. Media

 3.4.1. Nitrogen free semisolid medium 36

 3.4.2. Hydroxy Apatite Medium 36

 3.4.3. Pikovskaya’s Medium 37
3.4.4. Nutrient Agar/Nutrient Broth 38
3.4.5. Yeast Extract Glucose Agar 38
3.4.6. King’s B Medium 38
3.4.7. Luria Bertani medium 39
3.4.8. Sporulating medium 39

3.5. Collection of samples 39

3.6. Isolation and enumeration of Azospirillum 40

3.7. Isolation and enumeration of PSB 41

3.8. Screening of Azospirillum strains 41
 3.8.1. Preliminary screening 41
 3.8.2. Nitrogen fixation by Azospirillum strains 41
 3.8.3. Acetylene reduction activity 42

3.9. Screening of PSB strains 43
 3.9.1. Phosphate solubilization in solid medium 43
 3.9.2. Change in pH of the medium 43
 3.9.3. Estimation of organic acids 43
 3.9.4. Estimation of phosphatase activity 44
 3.9.5. Estimation of available P 45

3.10. Identification of bacterial strains 45
 3.10.1. Cell morphology 45
 3.10.2 Gram staining 46
 3.10.3. Stains 46
 3.10.4. Motility 47
 3.10.5. Biotin requirement 47
 3.10.6. Denitrification 47
 3.10.7. Acid production 47
 3.10.8. Spore staining 48
 3.10.9. Catalase test 48
 3.10.10. Oxidase test 49
 3.10.11. Indole production 49
 3.10.12. Methyl red and Voges - Proskauer test 50
 3.10.13. Gelatin liquefaction 51
3.10.14. Starch hydrolysis
3.10.15. Nitrate reduction test
3.10.16. Urease test
3.10.17. Citrate utilization
3.10.18. Arginine dehydrolase
3.10.19. Fluorescence test
3.10.20. H$_2$S production
3.10.21. Pigmentation on BMS agar
3.10.22. Levan production for sucrose
3.10.23. Growth in sodium chloride

3.11. Biodiversity study

3.11.1. Isolation of genomic DNA
3.11.2. RAPD Analysis
3.11.3. Dendrogram

3.12. In vitro tests

3.12.1. pH tolerance
3.12.2. Temperature tolerance
3.12.3. Antibiotic resistance
3.12.4. Pesticide tolerance
3.12.5. Fungicide resistance
3.12.6. Impact of carbon sources on N fixation and P solubilization
3.12.7. Impact of nitrogen sources on N fixation and P solubilization
3.12.8. Effect of different phosphate sources on P solubilization
3.12.9. Utilization of carbon, nitrogen, amino acid and vitamin compounds
3.12.10. Estimation of ammonium excretion
3.12.11. Estimation of poly-β-hydroxy butyrate (PHB)
3.12.12. Estimation of siderophore
3.12.13. Estimation of exopolysaccharide
3.12.15. Estimation of indole acetic acid 64
3.12.16. Estimation of Gibberellins 65
3.12.17. Estimation of protein 65
3.12.18. Estimation of total chlorophyll 65

3.13. Yield 66

 3.14.3. Carrier material 67
 3.14.4. Shelf life of bioinoculants 67

3.15. Nursery Experiment 67

3.16. Field Experiments 68

3.17. Organic Farming 69

4. RESULTS 70

4.1. Chapter I 70
 4.1.1. Isolation of N-fixing and P-solubilizing bacteria 70
 4.1.2. Selection of N-fixing and P-solubilizing bacteria 70
 4.1.3. Identification of Azospirillum 72
 4.1.4. Identification of PSB 73
 4.1.5. Biodiversity of Azospirillum and PSB 75

4.2. Chapter II 76
 4.2.1. Biology 76
 4.2.1.1. Selection of media 76
 4.2.1.2. Growth kinetics 76
 4.2.1.3. Influence of pH on growth 77
 4.2.1.4. Influence of Temperature on growth 77
 4.2.1.5. Antibiotic resistance 77
 4.2.1.6. Pesticide resistance 77
 4.2.1.7. Fungicide resistance 77
 4.2.1.8. Utilization of carbon compounds 78
 4.2.1.9. Utilization of nitrogenous compounds 78
 4.2.1.10. Utilization of amino acids 79
 4.2.1.11. Utilization of vitamins 79
4.2.1.12. Plant growth promoting substances
4.2.1.13. Ammonium excretion and PHB production
4.2.1.14. Production of siderophore and exopolysaccharide (EPS)

4.2.2. Factors influencing nitrogenase activity
4.2.2.1. Impact of carbon and nitrogen sources on nitrogenase activity
4.2.2.2. Impact of abiotic factors on nitrogenase activity
4.2.2.3. Effect of incubation period on nitrogenase activity
4.2.2.4. Effect of nature of medium on nitrogenase activity
4.2.2.5. Impact of *Azospirillum* population on nitrogenase activity
4.2.2.6. Nitrogenase activity in soil
4.2.2.7. Effect of *Azospirillum* inoculation on ARA of roots
4.2.2.8. Effect of agrochemicals on nitrogenase activity

4.2.3. Factors affecting phosphate solubilization
4.2.3.1. Impact of carbon and nitrogen sources on P solubilization
4.2.3.2. Solubilization of various sources of phosphate by PSB

4.2.4. Ecology
4.2.4.1. Population dynamics of *Azospirillum* and PSB in the rhizosphere and non rhizosphere soil
4.2.4.2. Population dynamics of *Azospirillum* and PSB with respect to age of the bushes
4.2.4.3. Effect of agrochemicals on *Azospirillum* and PSB population

4.3. Chapter III
4.3.1. Standardization of age and quantity of the culture
4.3.2. Quantity of culture with respect to carrier material
4.3.3. Preparation of bioformulation
4.3.4. Shelf life

4.4. Chapter IV
4.4.1. Effect of *Azospirillum* on rooting of tea clone
4.4.2. Colonization of *Azospirillum* and PSB on root system
4.4.3. Dual inoculation of *Azospirillum* and PSB on N and P-metabolism in soil

4.4.4. Performance of *Azospirillum* strains isolated from various agroclimatic zones

4.4.5. Effect of *Azospirillum* and PSB on field grown plants

 4.4.5.1. Response of various tea clones to bioinoculants
 4.4.5.2. Evaluation of carrier materials
 4.4.5.3. Optimization of dosage of biofertilizers in tea
 4.4.5.4. Standardization of method of application of biofertilizers
 4.4.5.5. Frequency of application of biofertilizers in tea
 4.4.5.6. Effect of biofertilizers on high yielding and low yielding tea fields
 4.4.5.7. Evaluation of biofertilizers in clonal tea
 4.4.5.8. Multilocational trials of biofertilizers

4.5. Chapter V

 4.5.1. Role of biofertilizers in organic farming

5. DISCUSSION

6. SUMMARY AND CONCLUSION

7. REFERENCES