SYNTHESIS, CHARACTERIZATION AND PHARMACOLOGICAL STUDIES OF COPPER COMPLEXES DERIVED FROM 2-AMINOBENZOTHIAZOLE DERIVATIVES

A THESIS

Submitted by

G. BOOMADEVI JANAKI

in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

Under the Guidance of

Dr. J. JOSEPH

DEPARTMENT OF CHEMISTRY
NOORUL ISLAM UNIVERSITY
(Declared as deemed- to- be-University under section 3 of U. G.C Act 1956)

NOORUL ISLAM CENTRE FOR HIGHER EDUCATION
KUMARACOIL, TAMILNADU–INDIA 629 180

MAY 2014
DECLARATION

I hereby declare that the thesis entitled “SYNTHESIS, CHARACTERIZATION AND PHARMACOLOGICAL STUDIES OF COPPER COMPLEXES DERIVED FROM 2-AMINOBENZOTHIAZOLE DERIVATIVES” submitted by me for the degree of Doctor of Philosophy in chemistry is the result of my original and independent research work carried out under the guidance of Dr. J. Joseph Associate Professor, Department of Chemistry, Noorul Islam University, Kumaracoil and it has not formed the basis of the award of any degree, diploma, associateship, fellowships any other similar title previously.

Place: Kumaracoil

Date: (G. Boomadevi Janaki)
NOORUL ISLAM UNIVERSITY
(Declared as deemed-to-be-University under section 3 of U.G.C Act 1956)
KANYAKUMARI DISTRICT- 629 180

BONAFIDE CERTIFICATE

Certified that this THESIS entitled “Synthesis, characterization and pharmacological studies of copper complexes derived from 2-aminobenzothiazole derivatives” submitted for the award of the Degree of Doctor of Philosophy in Chemistry of the Noorul Islam Center for Higher Education is a bonafide research work done by Ms. G. Boomadevi Janaki under my supervision.

Further certified that to the best of my knowledge, the work has not been part of any other thesis or dissertation for which any degree or diploma has been conferred by any University or Institution.

SIGNATURE

RESEARCH SCHOLAR
Ms. G. Boomadevi Janaki

SIGNATURE

SUPERVISOR
Dr. J. Joseph
Associate Professor,
Department of Chemistry,
Noorul Islam Centre for Higher Education
Kumaracoil-629180, Tamilnadu.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER I

INTRODUCTION

1.1 Choice of ligands
1.2 Importance of Schiff base
1.2.1 Aldol Reaction
1.3 Significance of copper complexes in therapeutic fields
1.3.1 Sources of copper
1.3.1.1 Food sources
1.3.1.2 Supplements
1.3.2 Redox nature of copper complexes
1.3.3 DNA Binding and cleavage nature of copper complexes
1.3.4 Enzymatic function of Copper
1.3.4.1 Central nervous system
1.3.4.2 Neurotransmitter synthesis
1.3.4.3 Super oxide dismutase activity
1.3.4.4 Catalase activity
1.4 DNA Binding Studies
1.5 Antioxidant Defence
1.6 Literature Survey
1.7 Scope of the present work
CHAPTER II

EXPERIMENTAL

2.1 Materials

2.2 Purification of solvents

2.3 Preparation of supporting electrolyte

2.4 Preparation of buffers and solutions
 2.4.1 Preparation of Tris-HCl buffer
 2.4.2 DNA purity

2.5 Analytical methods of characterization
 2.5.1 Elemental analysis
 2.5.2 Copper estimation
 2.5.2.1 Determination of copper content
 2.5.2.2 Determination of chloride contents
 2.5.3 Molar conductance measurements
 2.5.4 Magnetic susceptibility and Magnetic moments measurements
 2.5.5 IR Spectra
 2.5.6 Nuclear magnetic resonance spectra
 2.5.7 Mass spectra
 2.5.8 Electronic spectra
 2.5.9 Electron paramagnetic resonance (EPR)
 2.5.10 Thermal analyses
 2.5.11 Powder X-ray diffraction
 2.5.12 SEM
 2.5.13 Cyclic Voltometry

2.6 Biological Studies
 2.6.1 Antimicrobial activities
 2.6.2 DNA Binding Studies
 2.6.2.1 Absorption titration experiment
 2.6.2.2 Electrochemical studies
 2.6.3 Thermal Denaturation
 2.6.4 Viscosity experiments
2.6.5 Lipophilicity test

<table>
<thead>
<tr>
<th>2.6.6 Antioxidant Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.6.1 Superoxide dismutase activity (SOD)</td>
</tr>
<tr>
<td>2.6.6.2 Hydrogen peroxide Assay</td>
</tr>
</tbody>
</table>

2.7 Pharmacological activity

<table>
<thead>
<tr>
<th>2.7.1 Stability Measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7.2 Anti-inflammatory Activity</td>
</tr>
<tr>
<td>2.7.3 Catalase activity studies</td>
</tr>
<tr>
<td>2.7.3.1 Absorption titration experiment</td>
</tr>
</tbody>
</table>

CHAPTER III

SYNTHESIS OF LIGANDS AND THEIR COPPER COMPLEXES

<table>
<thead>
<tr>
<th>3.1 General Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2 Synthesis of ligands and their copper complexes</td>
</tr>
<tr>
<td>3.2.1 Section 1</td>
</tr>
<tr>
<td>3.2.1.1 Synthesis of Knoevenagel condensate β-ketoanilides</td>
</tr>
<tr>
<td>3.2.1.2 Synthesis of Schiff base ligands</td>
</tr>
<tr>
<td>3.2.1.3 Synthesis of copper complexes</td>
</tr>
<tr>
<td>3.2.2 Section 2</td>
</tr>
<tr>
<td>3.2.2.1 Synthesis of Knoevenagel condensate β-ketoanilides</td>
</tr>
<tr>
<td>3.2.2.2 Synthesis of Schiff base ligands</td>
</tr>
<tr>
<td>3.2.2.3 Synthesis of copper complexes</td>
</tr>
<tr>
<td>3.2.3 Section 3</td>
</tr>
<tr>
<td>3.2.3.1 Synthesis of β-ketoanilides</td>
</tr>
<tr>
<td>3.2.3.2 Synthesis of curcmin analogs</td>
</tr>
<tr>
<td>3.2.3.3 Synthesis of Schiff bases</td>
</tr>
<tr>
<td>3.2.3.4 Synthesis of copper complexes</td>
</tr>
</tbody>
</table>
CHAPTER IV

STRUCTURAL, CHARACTERIZATION OF LIGNADS AND THEIR COPPER COMPLEXES

4.1 Introduction 111

4.2 Experimental 112

4.2.1 Material 112

4.2.2 Instrumentation 112

4.3 Results and Discussions 113

4.3.1. Analytical and physical data of the ligand and its complexes 114

4.3.2 Molar conductance 114

4.3.3 NMR spectra 115

4.3.4 FT-IR Spectroscopy 121

4.3.5 Electronic absorption spectra 125
CHAPTER V

BIOLOGICAL AND PHARMACOLOGICAL STUDIES OF LIGANDS AND THEIR COPPER COMPLEXES 139

5.1 General introduction 139
5.2. Antimicrobial activity 140
5.3. DNA binding experiments 146
 5.3.1 Cyclic Voltammetric Studies 146
 5.3.2 Absorption spectral titrations 150
5.4 Viscosity Measurements 153
5.5 Thermal denaturation 155
5.6 Lipophilicity test 156
5.7 Antioxidant assay 159
 5.7.1 Superoxide dismutase activity 159
 5.7.2 \(\text{H}_2\text{O}_2 \) scavenging assay 163
5.8 Catalase activity 164
 5.8.1 Absorption titration experiment 164
 5.8.2 Electrochemical Behaviour 166
5.9 Anti-inflammatory activity 169
LISTS OF TABLES

Table 1 The copper content of some foods that are relatively rich in copper is listed in micrograms (mcg)

Table 5.2 Binding constant of copper complexes on interaction with DNA

Table 5.3 The binding free energy values of the copper complexes

Table 5.4 Partition coefficients (log P) values of copper complexes
Lists of Scheme

Scheme 1 Schematic route for the formation Schiff base
Scheme 2 The outline of synthesis of ligands and their copper complexes
Scheme 3 The schematic representation showed the synthesis of ligands and their corresponding copper complexes
Scheme 4 The schematic representation shows the synthesis of ligands and their copper complexes
Scheme 5 The schematic representation showed the outline of synthesis of ligands and their copper complexes
Scheme 6 The schematic representation shows the synthesis of ligands and their copper complexes
Scheme 7 The schematic representation shows the synthesis of ligands and their copper complexes.
Scheme 8 Mass fragmentation of copper complex of L10
LIST OF FIGURES

Fig. 1.1 The structure of 2-aminobenzothiazole
Fig. 1.2 Copper-zinc superoxide dismutase (Cu/Zn SOD) enzyme
Fig. 1.3 Three-dimensional structure of Catalase
Fig. 4.1 1H-NMR spectrum of ligand L1
Fig. 4.2 1H-NMR spectrum of ligand L18
Fig. 4.3 1H-NMR spectrum of ligand L34
Fig. 4.4 1H-NMR spectrum of ligand L48
Fig. 4.5 IR Spectrum of L1
Fig. 4.6 IR Spectrum of [CuL1(OAc)$_2$]
Fig. 4.7 IR Spectrum of L16 and [CuL16Cl$_2$]
Fig. 4.8 UV Absorption spectrum for [CuL2(OAc)$_2$]
Fig. 4.9 UV Absorption spectrum for [CuL17Cl$_2$]
Fig. 4.10 ESR spectrum of [CuL1(OAc)$_2$] at RT
Fig. 4.11 ESR spectrum of [CuL1(OAc)$_2$] at LNT
Fig. 4.12 Mass spectra for [CuL1(OAc)$_2$] complexes
Fig. 4.13 Mass spectra for [CuL3(OAc)$_2$] complexes
Fig. 4.14 TGA Curve for [CuL1(OAc)$_2$]
Fig. 4.15 SEM image of [CuL3(OAc)$_2$]
Fig. 4.16 SEM image of [CuL5(OAc)$_2$]
Fig. 4.17 SEM image of [CuL8(OAc)$_2$]
Fig. 4.18 SEM image of [CuL9(OAc)$_2$]

Fig. 5.1 Minimum inhibitory concentration of the synthesized ligands (L1-L11) and their corresponding copper complexes against growth of bacteria (μg/mL)
Fig. 5.2 Minimum inhibitory concentration of the synthesized ligands (L12-L14) and their corresponding copper complexes against growth of bacteria (μg/mL)
Fig. 5.3 Minimum inhibitory concentration of the synthesized ligands (L^{15}-L^{24}) and their corresponding copper complexes against growth of bacteria (μg/mL)

Fig. 5.4 Minimum inhibitory concentration of the synthesized ligands (L^{25}-L^{34}) and their corresponding copper complexes against growth of bacteria (μg/mL)

Fig. 5.5 Minimum inhibitory concentration of the synthesized ligands (L^{35}-L^{44}) and their corresponding copper complexes against growth of bacteria (μg/mL)

Fig. 5.6 Minimum inhibitory concentration of the synthesized ligands (L^{45}-L^{54}) and their corresponding against growth of bacteria (μg/mL)

Fig. 5.7 Cyclic voltammogram of [CuL^{13}Cl_2] in the presence and absence of different concentrations of DNA

Fig. 5.8 UV Absorption spectrum for [CuL^{2}(OAc)_2] in the presence and absence of DNA

Fig. 5.9 Effect on relative viscosity of CT-DNA under the influence of increasing amount of the complexes at 25 ± 0.1 °C.

Fig. 5.10 Melting curves of CT-DNA in the absence and presence of copper complexes

Fig. 5.11 Superoxide dismutase activity of Cu(II) complexes in (μmol dm^{-3})

Fig. 5.12 Anti oxidant activity of Cu(II) complexes in (μmol dm^{-3})

Fig. 5.13 Catalase activity of Catalase enzyme

Fig. 5.14 Catalase activity of copper complexes

Fig. 5.15 Complete Decomposition of H_2O_2 by Catalase enzyme and copper complexes

Fig. 5.16 Electrochemical response of catalase enzyme

Fig. 5.17 Electrochemical response of copper enzyme