Contents

Acknowledgements

Preface

Chapter 1: Introduction: Polymer–Ceramic Nanocomposites

1.1 Composite materials – An overview
1.1.1 Classification of composites
1.2 Polymer composites
1.2.1 Electro-active polymer (EAP) Composites
1.3 Nanocomposites
1.3.1 Pyroelectric and piezoelectric nanocomposites
1.4 Polymer-ceramic nanocomposites
1.5 Pyroelectric detector materials
1.5.1 Theory and equivalent circuits
1.5.2 Configuration
1.5.3 Figures of merit for pyroelectric IR detection
1.5.4 Material properties
1.5.5 Applications
1.6 Present scenario of pyroelectric thermal/IR detectors
1.6.1 Polymer-ceramic composites as pyroelectric thermal/IR detectors
1.6.1.1 Importance of composite materials for IR detection
1.7 Other applications of polymer-ceramic nanocomposites
1.8 Work presented in the thesis

Chapter 2: Experimental Methods

2.1 Introduction
2.2 Sample preparation
Chapter 3: Pyroelectric Properties of LiTaO$_3$/Poly(vinylidene fluoride) (LT/PVDF) Nanocomposites

3.1 Introduction
3.2 Experimental techniques
 3.2.1 Sample preparation
 3.2.1.1 Synthesis of LiTaO$_3$ nanopowders
 3.2.1.2 Preparation of PVDF polymer solution
 3.2.1.3 Synthesis of LT/PVDF nanocomposite films
 3.2.2 Sample characterization
 3.2.2.1 Dielectric measurements
 3.2.2.2 Pyroelectric measurements
 3.2.2.3 Thermal studies
 3.2.2.4 Hardness measurements
3.3 Results and discussions
 3.3.1 Material identification, structure and
3.3.2 Sample density 95
3.3.3 Dielectric properties 96
3.3.4 Pyroelectric coefficients 99
3.3.5 Thermal analysis 101
3.3.6 Pyroelectric figures of merit 103
3.3.7 Hardness studies 105

3.4 Conclusions 105
References 107

Chapter 4: Pyroelectric Properties of LiNbO$_3$/Poly(vinylidene fluoride) (LN/PVDF) Nanocomposites 111-136

4.1 Introduction 111
4.2 Experimental techniques 115
 4.2.1 Sample preparation 115
 4.2.1.1 Synthesis of LiNbO$_3$ nanoparticles 115
 4.2.1.2 Preparation of PVDF polymer matrix 116
 4.2.1.3 Synthesis of LN/PVDF nanocomposite films 116
 4.2.2 Sample characterization 117
 4.2.2.1 Dielectric measurements 117
 4.2.2.2 Pyroelectric measurements 117
 4.2.2.3 Thermal studies 118
 4.2.2.4 Hardness measurements 119
4.3 Results and discussions 119
 4.3.1 Material identification, structure and morphology 119
 4.3.2 Sample density 123
 4.3.3 Dielectric properties 124
 4.3.4 Pyroelectric coefficients 127
 4.3.5 Thermal analysis 129
 4.3.6 Pyroelectric figures of merit 130
 4.3.7 Hardness studies 132
4.4 Conclusions 132
References 134
Chapter 5: Pyroelectricity in Strontium Barium Niobate/Polyurethane Nanocomposites

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>137-141</td>
</tr>
<tr>
<td>5.2</td>
<td>Experimental techniques</td>
<td>137-141</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Sample preparation</td>
<td>137-141</td>
</tr>
<tr>
<td>5.2.1.1</td>
<td>Synthesis of SBN30 nanopowders</td>
<td>137-141</td>
</tr>
<tr>
<td>5.2.1.2</td>
<td>Preparation of PU polymer solution</td>
<td>137-142</td>
</tr>
<tr>
<td>5.2.1.3</td>
<td>Synthesis of SBN/PU nanocomposite films</td>
<td>137-143</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Sample characterization</td>
<td>137-146</td>
</tr>
<tr>
<td>5.2.2.1</td>
<td>Dielectric measurements</td>
<td>137-146</td>
</tr>
<tr>
<td>5.2.2.2</td>
<td>Pyroelectric measurements</td>
<td>137-146</td>
</tr>
<tr>
<td>5.2.2.3</td>
<td>Thermal studies</td>
<td>137-146</td>
</tr>
<tr>
<td>5.2.2.4</td>
<td>Hardness measurements</td>
<td>137-146</td>
</tr>
<tr>
<td>5.3</td>
<td>Results and discussions</td>
<td>137-146</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Material identification, structure and morphology</td>
<td>137-146</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Sample density</td>
<td>137-146</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Dielectric properties</td>
<td>137-146</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Pyroelectric coefficients</td>
<td>137-146</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Thermal analysis</td>
<td>137-146</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Pyroelectric figures of merit</td>
<td>137-146</td>
</tr>
<tr>
<td>5.3.7</td>
<td>Hardness studies</td>
<td>137-146</td>
</tr>
<tr>
<td>5.4</td>
<td>Conclusions</td>
<td>137-158</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>137-159</td>
</tr>
</tbody>
</table>

Chapter 6: Pyroelectric Properties of Composites of Microcrystalline TGS and DTGS in Polyurethane for IR/Thermal Detection

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>163-167</td>
</tr>
<tr>
<td>6.2</td>
<td>Experimental techniques</td>
<td>163-167</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Sample preparation</td>
<td>163-167</td>
</tr>
<tr>
<td>6.2.1.1</td>
<td>Synthesis of TGS and DTGS microcrystalline powders</td>
<td>163-167</td>
</tr>
<tr>
<td>6.2.1.2</td>
<td>Preparation of PU polymer solution</td>
<td>163-168</td>
</tr>
</tbody>
</table>
6.2.1.3 Synthesis of TGS/PU and DTGS/PU composites

6.2.2 Sample characterization
 6.2.2.1 Dielectric measurements
 6.2.2.2 Pyroelectric measurements
 6.2.2.3 Thermal studies
 6.2.2.4 Hardness measurements

6.3 Results and discussions
 6.3.1 Material identification, structure and morphology
 6.3.2 Sample density
 6.3.3 Dielectric properties
 6.3.4 Pyroelectric coefficients
 6.3.5 Thermal analysis
 6.3.6 Pyroelectric figures of merit
 6.3.7 Hardness studies
 6.3.8 Comparison of pyroelectric properties with other similar detector materials

6.4 Conclusions
References

Chapter 7: Conclusions and Scope for Future Work 191-198

7.1 Conclusions
7.2 Salient features of the research work done
7.3 Scope for future work

Appendix I
Appendix II
Appendix III