List of Tables

Table 2.1 Averaged peak values and changes in various parameters due to ICMEs with different GCR effectiveness; quiet, small, moderate, large, and very large.

Table 2.2 Gaussian-fit parameters for the distribution of maximum solar-wind velocity [V_{max}, central-peak value of V_{max} [x_c], width [w], full width at half maximum [w_c], and the product x_cw_c during the passage of ICMEs of different GCR effectiveness.

Table 2.3 Gaussian-fit parameters for the distribution of maximum magnetic field [F_{max}, central-peak value of F_{max} [x_c], width [w], full width at half maximum [w_c], and the product x_cw_c during the passage of ICMEs of different GCR effectiveness.

Table 2.4 Gaussian-fit parameters for the distribution of maximum electric field [E_{max}, central-peak value of E_{max} [x_c], width [w], full width at half maximum [w_c], and the product x_cw_c during the passage of ICMEs of different GCR effectiveness.

Table 2.5 Average GCR intensity depression ΔI [%] at the Kiel and Calgary neutron monitors, peak values of interplanetary plasma/field parameters [V_{max}, F_{max}, $\sigma_{F_{\text{max}}}$, $\sigma_{F_{\text{max}}}/F_{\text{max}}$, β_{max}, and E_{max}], and enhancements in these parameters [ΔV, ΔF, $\Delta \sigma_{F}$, $\Delta(\sigma_{F}/F)$, and ΔE] due to ICMEs associated with/without shocks, BDEs, BDE-BIF, magnetic cloud, and halo structures. The calculated ratios of the values of different parameters due to ICME with/without particular structure are also given.

Table 2.6 Average GCR intensity depression ΔI [%] at the Kiel and Calgary neutron monitors, peak values of interplanetary plasma-field parameters [V_{max}, F_{max}, $\sigma_{F_{\text{max}}}$, $\sigma_{F_{\text{max}}}/F_{\text{max}}$, β_{max} and E_{max}] and enhancements in these parameters [ΔV, ΔF, $\Delta \sigma_{F}$, $\Delta(\sigma_{F}/F)$, and ΔE] due to BDE ICMEs associated with/without shock, magnetic clouds with/without shock, halo CMEs with/without shock structures. The calculated ratios of different parameters due to ICME of different features with/without shock are also given.
Table 2.7 Gaussian-fit parameters for the distribution of maximum solar-wind velocity [V_{max}], central-peak value of V_{max} [x_c], width [w], full widths at half maximum [w_c], and the product $x_c w_c$ during the passage of ICMEs with different structures/features.

Table 2.8 Gaussian-fit parameters for the distribution of maximum magnetic field [F_{max}], central-peak value of F_{max} [x_c], width [w], full widths at half maximum [w_c], and the product $x_c w_c$ during the passage of ICMEs with different structures/features.

Table 2.9 Gaussian-fit parameters for the distribution of electric field [E_{max}], central-peak value of E_{max} [x_c], width [w], full width at half maximum [w_c], and the product $x_c w_c$ during the passage of ICMEs with different structures/features.

Table 2.10 Comparative distribution of relative GCR effectiveness (quiet, small, moderate, large, and very large) due to ICMEs associated/not associated with different structures.

Table 2.11 Correlation coefficient [R] and slope from the best-fit linear curve between average GCR-intensity change and various parameters obtained from superposed-epoch analysis during the passage of ICMEs with different GCR effectiveness and associated/not associated with different structures/features.

Table 2.12 Characteristic recovery time [τ, hours] of GCR intensity with determination coefficient [R^2] due to ICMEs of different GCR-effectiveness, ICMEs associated/not associated with different structures/features and different ICMEs with/without shocks.

Table 2.13 Correlation coefficients between the rate of change in the GCR intensity during the recovery phase and various parameters for ICMEs associated with different structures and different GCR effectiveness.

Table 3.1 Average GCR intensity decrease [ΔI, %] at Oulu and Newark neutron monitors, peak values of plasma/field parameters [V_{max}, F_{max}, $(\sigma_F)_{\text{max}}$, $(F\times V)_{\text{max}}$, and $(F\times V^2)_{\text{max}}$] and enhancements in these parameters [ΔV, ΔF, $\Delta(\sigma_F)$, $\Delta(F\times V)$, and $\Delta(F\times V^2)$] due to ICMEs and CIRs detected during 1995 – 2009. Zero hour corresponds to start time of particular event.
Table 3.2 Values of linear simple Pearson correlation coefficients $[R]$ obtained from linear fit between temporal variation of decrease in GCR intensity and related plasma/field parameters $[V, F, \sigma_F, FV, \text{ and } FV^2]$ during main and recovery phases of intensity-depression due to ICMEs and CIRs associated with/without shocks. Durations of main phase and recovery phase are also given.

Table 4.1 A catalog of high-speed solar-wind streams observed during 2008 – 2011.

Table 4.2a Amplitudes and changes of various parameters obtained from averaged plots based on speed using superposed-epoch analysis.

Table 4.2b Distribution [in percent] of GCR effectiveness due to streams of five categories based on the speed.

Table 4.2c Time lag/lead between the minima of GCR-intensity depression and corresponding maxima in interplanetary parameters for different HSS speeds.

Table 4.2d Linear correlation coefficients $[R]$ obtained from the linear correlation between the temporal variation of the GCR-intensity depressions and the corresponding parameters $[V, F, \sigma_F, E, N, \text{ and } T]$ during the main and recovery phases of the intensity-depression caused by different stream categories based on speed.

Table 4.3a Amplitudes and changes of various parameters obtained from averaged plots based on duration using superposed-epoch analysis.

Table 4.3b Distribution (in percent) of GCR effectiveness due to streams of five categories based on the duration.

Table 4.3c Time lag/lead between the minima of GCR-intensity depression and corresponding maxima in interplanetary parameters for different HSS duration.

Table 4.3d Linear correlation coefficients $[R]$ obtained from the linear correlation between temporal variation of the GCR-intensity depressions and the corresponding parameters $[V, F, \sigma_F, E, N, \text{ and } T]$ during the main and recovery phases of intensity-depression caused by different stream categories based on duration.
Table 4.4a Amplitudes and changes of various parameters obtained from averaged plots based on sources using superposed-epoch analysis.

Table 4.4b Distribution [in percent] of GCR effectiveness due to streams of five categories based on the sources.

Table 4.4c Time lag/lead between the minima of the GCR-intensity depression and corresponding maxima in interplanetary parameters for different HSS sources.

Table 4.4d Linear correlation coefficients \([R]\) obtained from the linear correlation between the temporal variation of the GCR-intensity depressions and the corresponding parameters \([V, F, \sigma_F, E, N, \text{and} \ T]\) during the main and recovery phases of intensity-depression caused by different streams categories.

Table 4.5a Amplitudes and changes of various parameters obtained from averaged plots based on arrival of shocks using superposed-epoch analysis.

Table 4.5b Distribution [in percent] of GCR effectiveness due to streams of five categories based on the arrival of shocks.

Table 4.5c Time lag/lead between the minima of GCR-intensity depression and corresponding maxima in interplanetary parameters caused by HSS that are associated or are not associated with shocks.

Table 4.5d Linear correlation coefficients \([R]\) obtained from linear correlation between temporal variation of the GCR-intensity depressions and the corresponding parameters \([V, F, \sigma_F, E, N, \text{and} \ T]\) during the main and recovery phases of intensity depression due to different stream categories based on arrival of the shock arrival time.

Table 4.6 Central-peak value \([x_c]\) obtained from Gaussian fit \([y = y_0 + (A/w\sqrt{\pi/2}) \exp(-2(x-x_c)^2/w^2)]\) for the distribution of \(V_{\text{max}}, F_{\text{max}}, \text{and} \sigma_{F_{\text{max}}}\) during the HSS passage grouped into five categories based on their shock association.