List of Figures

Figure 1.1 Different layers of the Sun and its atmosphere.
Figure 1.2 Fast and slow solar winds, open and closed magnetic field lines.
Figure 1.3 Acceleration of the solar wind according to Parker’s theory.
Figure 1.4 The spiral structure of the interplanetary magnetic field.
Figure 1.5 A schematic view of the heliosphere and its interaction with the interstellar medium. The outflow of solar wind and IMF lines are also shown here (Venkatesan and Badruddin, 1990).
Figure 1.6 The typical parts of a normal CME observed by the LASCO coronagraph on SOHO spacecraft. The white circle marks the solar limb.
Figure 1.7 Schematic diagram of the 3D structure of an ICME and upstream shock, relating magnetic field, and plasma.
Figure 1.8 Schematic of the formation of corotating interaction regions (CIRs) between slow and fast solar winds. The compression of plasma and magnetic field are also shown.
Figure 1.9 The variation of relative cosmic-ray intensity, CRI (%) (upper panel) and solar activity (sunspot numbers, SSN) (lower panel) at the resolution of 27-day average from April 1964 to November 2014. Solar cycle number (20, 21, 22, 23, and 24) is also shown in the lower panel. The cosmic-ray intensity is in anticorrelation with the sunspot activity.
Figure 1.10 Classical two step Forbush decrease.
Figure 2.1 Superposed-epoch analysis of GCR intensity of neutron monitors at Kiel and Calgary and interplanetary-plasma field parameters; velocity $[V]$, magnetic-field vector $[F]$, standard deviation of field vector $[\sigma_F]$, ratio $[\sigma_F/F]$, plasma $\beta$, and electric field $[E]$ with respect to arrival time (zero hour) of ICME disturbances producing depressions in GCR intensity of different range; (a) quiet, (b) small, (c) moderate, (d) large, and (e) very large depressions. N stands for number of events.
Figure 2.2 Frequency distribution and Gaussian-fitted curves for (a) $V_{\text{max}}$ [km s$^{-1}$], (b) $F_{\text{max}}$ [nT], and (c) $E_{\text{max}}$ [mV m$^{-1}$], during the passage of ICMEs.
producing GCR-intensity depression of different range (quiet, small, moderate, large, and very large).

**Figure 2.3** Superposed-epoch analysis results of GCR intensity and interplanetary plasma and field parameters; velocity [V], magnetic-field vector [F], standard deviation of field vector [σF], ratio [σv/F], plasma β, and electric field [E] with respect to passage of ICMEs associated with, (a) shock/sheath and (b) ICMEs not associated with shock/sheath region. N stands for number of events.

**Figure 2.4** Superposed-epoch analysis results of GCR intensity and interplanetary plasma and field parameters; velocity [V], magnetic-field vector [F], standard deviation of field vector [σF], ratio [σv/F], plasma β, and electric field [E] due to ICMEs, (a) with bidirectional superthermal electron flows (BDEs), and (b) without BDEs. N stands for number of events.

**Figure 2.5** Superposed-epoch analysis results of GCR intensity and interplanetary plasma and field parameters; velocity [V], magnetic-field vector [F], standard deviation of field vector [σF], ratio [σv/F], plasma β, and electric field [E] with respect to (a) ICMEs with bidirectional superthermal electron flows (BDEs) as well as bidirectional energetic ion flows (BIFs), and (b) ICMEs with BDEs but without BIFs. N stands for number of events.

**Figure 2.6** Superposed-epoch analysis results of GCR intensity and interplanetary plasma and field parameters; velocity [V], magnetic-field vector [F], standard deviation of field vector [σF], ratio [σv/F], plasma β, and electric field [E] with respect to (a) ICMEs reported to be magnetic clouds (MC) and (b) ICMEs not showing magnetic cloud structure (non-MC). N stands for number of events.

**Figure 2.7** Superposed-epoch analysis results of GCR intensity and interplanetary plasma and field parameters: velocity [V], magnetic-field vector [F], standard deviation of field vector [σF], ratio [σv/F], plasma β, and electric field [E] for ICME structures due to (a) halo CMEs and (b) for ICME structures other than halo CMEs (non-halo). N stands for number of events.
Figure 2.8 Frequency distribution of maximum speed, $[V_{\text{max}}, \text{ km s}^{-1}]$ observed during the passage of ICMEs associated/not associated with (a) shocks, (b) BDEs, (c) magnetic clouds, and (d) halo CMEs. Gaussian best-fit curves representing the distribution of ICMEs are also shown in the figure. The central-peak values $[x_c]$ and full widths at half maximum $[w_c]$ obtained from the fits. $n$ stands for number of events, considered for each histogram.

Figure 2.9 Frequency distribution of maximum magnetic-field vector, $[F_{\text{max}}, \text{ nT}]$ observed during the passage of ICMEs associated/not associated with (a) shocks, (b) BDEs, (c) magnetic clouds, and (d) halo CMEs. Gaussian best-fit curves representing the distribution of ICMEs are also shown in the figure. The central-peak values $[x_c]$ and full widths at half maximum $[w_c]$ obtained from the fits. $n$ stands for number of events, considered for each histogram.

Figure 2.10 Frequency distribution of maximum electric field, $[E_{\text{max}}, \text{ mV m}^{-1}]$ observed during the passage of ICMEs associated/not associated with (a) shocks, (b) BDEs, (c) magnetic clouds, and (d) halo CMEs. Gaussian best-fit curves representing the distribution of ICMEs are also shown in the figure. The central-peak values $[x_c]$ and full widths at half maximum $[w_c]$ obtained from the fits. $n$ stands for number of events, considered for each histogram.

Figure 2.11 Best fit linear curve between averaged GCR-intensity depression $[\Delta I, \%]$ and (a) magnetic-field amplitude $[F_{\text{max}}, \text{ nT}]$, (b) electric-field amplitude $[E_{\text{max}}, \text{ mV m}^{-1}]$ due to ICMEs with different GCR-effectiveness and ICMEs associated/not associated with different structures/features.

Figure 2.12 Exponential fit and characteristic recovery time $[\tau, \text{ hours}]$ during recovery of GCR-intensity depressions due to ICMEs of different GCR-effectiveness.

Figure 2.13 Exponential fit and characteristic recovery time $[\tau, \text{ hours}]$ during recovery of GCR-intensity depressions due to ICMEs associated/not associated with shocks and bidirectional superthermal electron events (BDEs).
**Figure 2.14** Exponential fit and characteristic recovery time \([\tau, \text{ hours}]\) during recovery of GCR-intensity depressions due to ICMEs associated/not associated with magnetic cloud (MC) and halo CMEs.

**Figure 2.15** Linear-regression plot between \(V_{\text{max}} \text{ [km s}^{-1}\text{]}\) and GCR-intensity recovery time (hours), obtained from superposed-epoch plots, due to ICMEs with different GCR effectiveness and ICMEs associated/not associated with different structures/features.

**Figure 3.1** The superposed-epoch plots of hourly data of galactic cosmic ray (GCR) intensity at Oulu NM \([\Delta I/I]_O \text{ (\%)}\), GCR intensity at Newark NM \([\Delta I/I]_N \text{ (\%)}\), solar-wind velocity \([V]\), IMF vector \([F]\), standard deviation in IMF vector \([\sigma_F]\), the derivatives \(FV\) and \(FV^2\) due to ICMEs and CIRs observed during 1995 – 2009; zero hour (epoch) corresponds to arrival time (hour) of ICMEs and CIRs. N stands for number of events.

**Figure 3.2** The superposed-epoch plots of hourly data of galactic cosmic ray (GCR) intensity at Oulu NM \([\Delta I/I]_O \text{ (\%)}\), GCR intensity at Newark NM \([\Delta I/I]_N \text{ (\%)}\), plasma/field parameters \([V, F, \sigma_F, FV, \text{ and } FV^2]\) due to ICMEs and CIRs associated with shocks observed during 1995 – 2009; zero hour (epoch) corresponds to arrival time (hour) of ICMEs and CIRs with shocks. N stands for number of events.

**Figure 3.3** The superposed-epoch plots of hourly data of galactic cosmic ray (GCR) intensity at Oulu NM \([\Delta I/I]_O \text{ (\%)}\), GCR intensity at Newark NM \([\Delta I/I]_N \text{ (\%)}\), plasma/field parameters \([V, F, \sigma_F, FV, \text{ and } FV^2]\) due to ICMEs associated with/without shocks observed during 1995 – 2009; zero hour (epoch) corresponds to arrival time (hour) of ICMEs associated with/without shocks. N stands for number of events.

**Figure 3.4** Frequency distribution of i) maximum speed, \([V_{\text{max}}, \text{ km s}^{-1}\text{]}\), ii) maximum IMF vector, \([F_{\text{max}}, \text{ nT}]\), iii) maximum electric field, \([FV_{\text{max}}, \text{ mV m}^{-1}\text{]}\), iv) maximum standard deviation in IMF vector, \([\sigma_{F_{\text{max}}}, \text{ nT}]\), iv) maximum \([FV^2_{\text{max}}, \text{ mV s}^{-1}\text{]}\), and (vi) CR decrease observed during the passage of ICMEs associated/not associated with shocks. Gaussian best fit curves representing the distribution of ICMEs are also shown in the first five panel of figure. The central peak values \(x_c\), and full width
at half maxima $w_c$ obtained from the fits are also given. N stands for number of events considered for each histogram.

**Figure 3.5** The superposed-epoch plots of hourly data of galactic cosmic ray (GCR) intensity at Oulu NM [$\Delta I/I_o$ (%), GCR intensity at Newark NM [$\Delta I/I_N$ (%)], plasma/field parameters [$V$, $F$, $\sigma_F$, $FV$, and $FV^2$] due to ICMEs associated with shocks observed during 1995 – 2009; zero hour (epoch) corresponds to time (hour) of shock arriving at same/different time as Magnetic Obstacle (ejecta). N stands for number of events.

**Figure 3.6** The superposed-epoch plots of hourly data of galactic cosmic ray (GCR) intensity at Oulu NM [$\Delta I/I_o$ (%), GCR intensity at Newark NM [$\Delta I/I_N$ (%)], plasma/field parameters [$V$, $F$, $\sigma_F$, $FV$, and $FV^2$] due to ICMEs associated with shocks observed during 1995 – 2009; zero hour (epoch) corresponds to time (hour) of Magnetic Obstacle (ejecta) arriving at same/different time as shocks. N stands for number of events.

**Figure 3.7** The superposed-epoch plots of hourly data of galactic cosmic ray (GCR) intensity at Oulu NM [$\Delta I/I_o$ (%), GCR intensity at Newark NM [$\Delta I/I_N$ (%)], plasma/field parameters [$V$, $F$, $\sigma_F$, $FV$, and $FV^2$] due to ICMEs associated with/without shocks observed during 1995 – 2009; zero hour (epoch) corresponds to end time (hour) of ICMEs associated with/without shocks. N stands for number of events.

**Figure 3.8** The superposed-epoch plots of hourly data of galactic cosmic ray (GCR) intensity at Oulu NM [$\Delta I/I_o$ (%), GCR intensity at Newark NM [$\Delta I/I_N$ (%)], plasma/field parameters [$V$, $F$, $\sigma_F$, $FV$, and $FV^2$] due to CIRs associated with/without shocks observed during 1995 – 2009; zero hour (epoch) corresponds to arrival time (hour) of CIRs associated with/without shocks. N stands for number of events.

**Figure 3.9** Frequency distribution of i) maximum speed, [$V_{max}$, km s$^{-1}$], ii) maximum IMF vector, [$F_{max}$, nT], iii) maximum electric field, [$F_{Vmax}$, mV m$^{-1}$], iv) standard deviation in IMF vector, [$\sigma_{F_{max}}$, nT], and v) maximum [$F_{V_{max}}^2$, mV s$^{-1}$] observed during the passage of CIRs associated/not associated with shocks. Gaussian best fit curves representing the distribution of CIRs are also shown in the figure. The
central peak values $x_c$, and full width at half maxima $w_c$ obtained from the fits are also given. N stands for number of events considered for each histograms.

**Figure 3.10** The superposed-epoch plots of hourly data of galactic cosmic ray (GCR) intensity at Oulu NM $[\Delta I/I]_O$ (%), GCR intensity at Newark NM $[\Delta I/I]_N$ (%), plasma/field parameters $[V, F, \sigma_F, FV, and FV^2]$ due to CIRs associated with/without shocks observed during 1995 - 2009; zero hour (epoch) corresponds to stream interface (SI) time (hour) of CIRs associated with/without shocks. N stands for number of events.

**Figure 3.11** The superposed-epoch plots of hourly data of galactic cosmic ray (GCR) intensity at Oulu NM $[\Delta I/I]_O$ (%), GCR intensity at Newark NM $[\Delta I/I]_N$ (%), plasma/field parameters $[V, F, \sigma_F, FV, and FV^2]$ due to CIRs associated with/without shocks observed during 1995 - 2009; zero hour (epoch) corresponds to end time (hour) of CIRs associated with/without shocks. N stands for number of events.

**Figure 4.1** A typical compound high-speed stream caused by two coronal–hole associated streams (C) and a CME associated stream (E) observed between UT: 14:00, 20 July 2010 to UT 14:00, 12 August 2010. The dotted vertical lines on the left and right are the start and end times of the stream. We plot the temporal variation of various parameters: GCR-intensity variation recorded by Oulu neutron monitor $[\Delta I/I]_O$ (%), and Hermanus neutron monitor $[\Delta I/I]_H$ (%), the solar-wind velocity $[V, \text{km s}^{-1}]$, plasma density $[N, n \text{ cm}^{-3}]$, plasma temperature $[T, 10^5 \text{ K}]$, interplanetary magnetic field $[B, \text{nT}]$, standard deviation in field vector $[\sigma_F, \text{nT}]$, and the electric field $[E, \text{mV m}^{-1}]$ from 15 July 2010 to 14 August 2010.

**Figure 4.2** Superposed-epoch analysis results of the GCR-intensity variation recorded at Oulu NM $[\Delta I/I]_O$ (%), at Hermanus NM $[\Delta I/I]_H$ (%), the solar-wind velocity $[V, \text{km s}^{-1}]$, interplanetary magnetic field vector $[F, \text{nT}]$, standard deviation of magnetic field $[\sigma_F, \text{nT}]$, electric field $[E, \text{mV m}^{-1}]$, plasma density $[N, n \text{ cm}^{-3}]$, and the plasma temperature $[T, 10^5 \text{ K}]$ plotted for the arrival times of high-speed streams (zero hour) of the five categories based on the speed.
Figure 4.3 Relationship between the averaged temporal variation of the solar-wind velocity and the GCR-intensity depressions during the main phase of the intensity decrease caused by the five stream categories based on speed.

Figure 4.4 Superposed-epoch analysis results of the GCR-intensity variation recorded at Oulu NM $[\Delta I/I]_O$ (%), at Hermanus NM $[\Delta I/I]_H$ (%), the solar-wind velocity [$V$, km s$^{-1}$], interplanetary magnetic field vector [$F$, nT], standard deviation of magnetic field [$\sigma_F$, nT], electric field [$E$, mV m$^{-1}$], plasma density [$N$, n cm$^{-3}$], and the plasma temperature [$T$, $10^5$ K] plotted for the arrival times of high-speed streams (zero hour) of the five categories based on the duration.

Figure 4.5 Relationship between the averaged temporal variation of the solar-wind velocity and the GCR-intensity depressions during the main phase of the intensity decrease caused by the five stream categories based on duration.

Figure 4.6 Superposed-epoch analysis results of the GCR-intensity variation recorded at Oulu NM $[\Delta I/I]_O$ (%), at Hermanus NM $[\Delta I/I]_H$ (%), the solar-wind velocity [$V$, km s$^{-1}$], interplanetary magnetic field vector [$F$, nT], standard deviation of magnetic field [$\sigma_F$, nT], electric field [$E$, mV m$^{-1}$], plasma density [$N$, n cm$^{-3}$], and the plasma temperature [$T$, $10^5$ K] plotted for the arrival times of the high-speed streams (zero hour) of the five categories based on the stream sources.

Figure 4.7 Relationship between the averaged temporal variation of the solar-wind velocity and the GCR-intensity depressions during the main phase of the intensity decrease caused by the five stream categories based on sources.

Figure 4.8 Superposed-epoch analysis results of the GCR-intensity variation recorded at Oulu NM $[\Delta I/I]_O$ (%), at Hermanus NM $[\Delta I/I]_H$ (%), the solar-wind velocity [$V$, km s$^{-1}$], interplanetary magnetic field vector [$F$, nT], standard deviation of magnetic field [$\sigma_F$, nT], electric field [$E$, mV m$^{-1}$], plasma density [$N$, n cm$^{-3}$], and the plasma temperature [$T$, $10^5$ K] plotted for the arrival times of high-speed streams (zero hour) associated or not associated with a shock.
Figure 4.9  Frequency distribution of the highest speed \( [V_{\text{max}}, \text{ km s}^{-1}] \) observed during the passage of high-speed streams associated or not associated with shocks.

Figure 4.10  Gaussian best-fit curves representing the distribution of the highest speed \( [V_{\text{max}}] \) observed during the passage of HSS associated or not associated with shocks. Central peak values \( [\mu_c] \) obtained from the fits are also given.

Figure 4.11  Frequency distribution of the strongest magnetic field \( [F_{\text{max}}, \text{ nT}] \) observed during the passage of HSS associated or not associated with shocks.

Figure 4.11  Frequency distribution of the strongest magnetic field \( [F_{\text{max}}, \text{ nT}] \) observed during the passage of HSS associated or not associated with shocks.

Figure 4.12  Gaussian best-fit curves representing the distribution of the strongest magnetic field \( [F_{\text{max}}] \) observed during the passage of HSS associated or not associated with shocks. Central peak values \( [\mu_c] \) obtained from the fits are also given.

Figure 4.13  Frequency distribution of the highest standard deviation of the magnetic field \( [\sigma_{F_{\text{max}}}, \text{ nT}] \) observed during the passage of HSS associated or not associated with shocks.

Figure 4.14  Gaussian best-fit curves representing the distribution of the highest standard deviation of the magnetic field \( [\sigma_{F_{\text{max}}}] \) observed during the passage of HSS associated or not associated with shocks. Central peak values \( [\mu_c] \) obtained from the fits are also given.

Figure 4.15  Superposed-epoch analysis results of the GCR-intensity variation recorded at Oulu NM \( [\Delta I/\bar{I}]_O (\%) \), at Hermanus NM \( [\Delta I/\bar{I}]_H (\%) \), the solar-wind velocity \( [V, \text{ km s}^{-1}] \), interplanetary magnetic field vector \( [F, \text{ nT}] \), standard deviation of magnetic field \( [\sigma_F, \text{ nT}] \), electric field \( [E, \text{ mV m}^{-1}] \), plasma density \( [N, \text{ n cm}^{-3}] \), and the plasma temperature \( [T, 10^5 \text{ K}] \) plotted for arrival time of the high-speed streams (zero hour) of three categories based on the arrival of shocks.
Figure 4.16 Frequency distribution of the highest speed $[V_{\text{max}}, \text{km s}^{-1}]$ observed during the passage of different HSS categories based on the arrival time of shocks.

Figure 4.17 Gaussian best-fit curves representing the distribution of the highest speed $[V_{\text{max}}]$ observed during the passage of different HSS categories based on the arrival of shocks. Central peak values $[x_c]$ obtained from the fits are also given.

Figure 4.18 Frequency distribution of the strongest magnetic field $[F_{\text{max}}, \text{nT}]$ observed during the passage of different HSS categories based on the arrival of shocks.

Figure 4.19 Gaussian best-fit curves representing the distribution of the strongest magnetic field $[F_{\text{max}}]$ observed during the passage of different HSS categories based on the arrival of shocks. Central peak values $[x_c]$ obtained from the fits are also given.

Figure 4.20 Frequency distribution of the highest standard deviation of the magnetic field $[\sigma_{F_{\text{max}}}, \text{nT}]$ observed during the passage of different HSS categories based on the arrival of shocks.

Figure 4.21 Gaussian best-fit curves representing the distribution of the highest standard deviation of the magnetic field $[\sigma_{F_{\text{max}}}]$ observed during the passage of different HSS categories based on the arrival of shocks. Central peak values $[x_c]$ obtained from the fits are also given.

Figure 4.22 Relationship between the averaged temporal variation of the solar-wind velocity and the GCR-intensity depressions during the main phase of the intensity decrease caused by the five stream categories based on the arrival of shocks.

Figure 4.23 Relation between the amplitudes of the GCR-intensity decrease and enhancements in various parameters $[\Delta V, \Delta F, \text{and } \Delta \sigma_F]$ obtained from average plots caused by streams grouped on the basis of different criteria (i.e. solar-wind speed, HSS duration, solar sources, and presence or absence of accompanying shocks).