CONTENTS

<table>
<thead>
<tr>
<th>SL. NO</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>REVIEW OF LITERATURE</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Setting</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Species specificity of setting process</td>
<td>5</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Mechanism and role of myosin during setting</td>
<td>6</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Transglutaminase (TGase)</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Purification of TGase</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Structure of TGase</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>TGase assays</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Substrate for TGase</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Tools to follow TGase reaction</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Perspectives</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>Gelation</td>
<td>36</td>
</tr>
<tr>
<td>3.</td>
<td>MATERIAL AND METHODS</td>
<td>40</td>
</tr>
<tr>
<td>3.1</td>
<td>Raw materials</td>
<td>40</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Fish</td>
<td>40</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Chemicals</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>Methods</td>
<td>40</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Preparation of minced meat</td>
<td>41</td>
</tr>
</tbody>
</table>
3.2.2 Water washing of fish mince

3.2.3 Isolation and purification of TGase enzyme

3.2.3.1 Isolation of crude TGase extract

3.2.3.2 Enzyme Purification

3.2.4 TGase characterization

3.2.4.1 Molecular weight determination

3.2.4.2 Effect of temperature on TGase activity

3.2.4.3 Effect of activator / inhibitors on TGase activity

3.2.5 Gel forming ability

3.2.6 Setting experiments

3.2.6.1 Setting ability of flat fish with added purified TGase enzyme from four different fish species

3.2.7 Preparation of heat induced gel

3.3 Analyses

3.3.1 Proximate composition

3.3.2 Transglutaminase enzyme activity assay

3.3.3 Molecular weight analysis

Gel filtration technique

SDS-PAGE pattern

3.3.4 Dynamic rheological testing using controlled stress rheometer

3.3.4.1 Thermal gelation profile

Torque sweep

Gel strength measurement using texture analyzer

3.3.4.2 Setting

3.3.5 Protein solubility

3.3.6 Free sulfhydryl group content
4. EXPERIMENTAL RESULT

4.1 Proximate composition

4.2 Isolation of TGase from four different species of fish

4.2.3 Characterization of TGase from different fish species

Temperature optima of TGase activity

Effect of CaCl$_2$ (activator) concentration on TGase activity

Effect of inhibitors on TGase activity

4.4 Gel forming ability of different fish species

4.5 Setting ability of various fish species

4.5.1 Bigeye snapper

4.5.2 Oil sardine

4.5.3 Tilapia

4.5.4 Common carp

4.6 Effect of activator and inhibitors on the setting ability and dynamic viscoelastic behavior of fish mince

4.6.1 Effect of activator (CaCl$_2$)

4.6.2 Effect of inhibitors

4.6.2.1 Effect of EDTA

4.6.2.2 Effect of NH$_4$Cl

4.6.2.3 Effect of lysine-HCl

4.7 Effect of setting without and with activators / inhibitors on the strength of gel network

4.7.1 Torque sweep

4.7.1.1 Effect of CaCl$_2$ (activator)

4.7.1.2 Effect of EDTA (inhibitor)

4.7.1.3 Effect of NH$_4$Cl (inhibitor)
4.7.1.4 Effect of lysine-HCl (inhibitor) 65

4.8 Effect of setting without and with activators / inhibitors on some properties of protein from four fish species 65

4.8.1 Protein solubility 67

4.8.2 Electrophoretic mobility under reduced condition (SDS-PAGE pattern) 67

4.8.3 Free sulfhydryl group content 68

4.9 Effect of added purified TGase from four fish species on setting and dynamic viscoelastic behavior of flat fish (Cynoglossus sp.) mince 68

4.10 SDS-PAGE pattern of set flat fish meat without and with added TGase 70

5. DISCUSSION 71

5.1 Proximate composition 71

5.2 Isolation and properties of TGase enzyme 72

5.2.1 Characterization of TGase from different fish species 73

5.3 Gel forming ability of different fish species 77

5.4 Setting ability of various fish species 81

5.5 Effect of activator and inhibitors on the setting and gel forming ability of fish mince 82

5.6 Effect of setting without and with activators / inhibitors on some properties of protein from four fish species 86
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein solubility</td>
<td>86</td>
</tr>
<tr>
<td>Electrophoretic mobility under reduced condition (SDS-PAGE pattern)</td>
<td>87</td>
</tr>
<tr>
<td>Free sulphydryl group content</td>
<td>88</td>
</tr>
<tr>
<td>Contd.....</td>
<td></td>
</tr>
<tr>
<td>5.7 Effect of added purified TGase from four fish species on setting and dynamic viscoelastic behavior of flat fish (Cynoglossus sp.) mince</td>
<td>88</td>
</tr>
</tbody>
</table>

6. SUMMARY | 90 |
7. BIBLIOGRAPHY | 121 |