LIST OF FIGURES AND TABLES

<table>
<thead>
<tr>
<th>F/T No:</th>
<th>Title of Figures and Tables</th>
<th>P.No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER-1 FIGURES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Cell Cycle regulation</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>Schematic representation of HA structure and metabolic cycle in wounds.</td>
<td>11</td>
</tr>
<tr>
<td>1.3</td>
<td>Structure of hyaluronic acid binding protein in complex with hyaluronic acid</td>
<td>15</td>
</tr>
<tr>
<td>1.4</td>
<td>A model of innate and adaptive immune-cell function during inflammation-associated cancer development.</td>
<td>19</td>
</tr>
<tr>
<td>1.5</td>
<td>Polyreactive IgM antibody</td>
<td>28</td>
</tr>
<tr>
<td>1.6</td>
<td>Schematic representation of cellular interactions inducing humoral response.</td>
<td>30</td>
</tr>
<tr>
<td>1.7</td>
<td>Role of inflammation in the induction of autoantibodies and in the modulation of their effects on tumor growth</td>
<td>32</td>
</tr>
<tr>
<td>1.8</td>
<td>Schematic illustration of the immune response to cancer and development of IgM immune complexes in the blood stream</td>
<td>42</td>
</tr>
<tr>
<td>CHAPTER-1 TABLES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Examples of autoantibodies found in cancer patients.</td>
<td>25</td>
</tr>
<tr>
<td>1.2</td>
<td>Tumor-associated antigens evaluated as diagnostic marker</td>
<td>39</td>
</tr>
<tr>
<td>CHAPTER-3 FIGURES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Detection of hyaluronic acid binding proteins</td>
<td>68</td>
</tr>
<tr>
<td>3.2</td>
<td>Western blotting analysis of HABPs expression in appendicitis and cancer tissue samples Using probe bHA</td>
<td>69</td>
</tr>
<tr>
<td>3.3</td>
<td>Western blotting analysis of detection of antibodies (to HA-receptors) from various types of cancers (circulatory breast cancer serum as an antibody source)</td>
<td>70</td>
</tr>
<tr>
<td>3.4</td>
<td>Western blotting analysis of detection of antibodies (to HA-receptors) from various types of cancers (circulatory healthy serum as an antibody source)</td>
<td>72</td>
</tr>
<tr>
<td>3.5</td>
<td>Western blotting analysis of detection of antibodies (to HA-receptors) from HC (circulatory breast cancer sera as an</td>
<td>73</td>
</tr>
</tbody>
</table>
antibody source)

3.6: Western Blot analysis of detection of autoantibodies Healthy controls serum (as Ag) were reacted with healthy control sera (Abs)

3.7: Detection of autoantibodies to HA-receptors by ELISA

3.8: Detection of circulatory autoantibodies in grade wide by ELISA method

3.9: Detection of circulating serum autoantibodies by ELISA method

3.10: HA Competitive analysis by ELISA and western blot method

CHAPTER-3 TABLES

3.1: Detection of circulating HABPs in the different groups of cancer patients using bHA polymer probe by ELISA Method

3.2: Measurement of circulating autoantibodies in the different groups of cancer patients by ELISA Method

3.3: Detection of circulatory autoantibodies in grade wide by ELISA method

3.4: Detection of circulating serum autoantibodies by ELISA method

3.5: HA Competitive analysis by ELISA and western blot method.

CHAPTER-4 FIGURES

4.1: Elution profile of Sephacryl S-300 column chromatography Normal sera

4.2: Elution profile of Sephacryl S-300 column chromatography Breast Gr-I cancer sera

4.3: Elution profile of Sephacryl S-300 column chromatography Breast Gr-II cancer sera

4.4: Elution profile of Sephacryl S-300 column chromatography Breast Gr-III cancer sera

4.5: Elution profile of anti-IgM affinity chromatography

4.6: IgM Purity was checked by SDS-PAGE and non reducing (native) PAGE

4.7: Isotyping immunoglobulin class analysis by ELISA

4.8: Standard curve of IgM Antibody

4.9: Comparison of total IgM concentration analyzed by ELISA

4.10: Elution profile of Sephadex G-50 column chromatography of healthy control sera
4.11 : Elution profile of Sephadex G-50 column chromatography of breast cancer Gr-I sera
4.12 : Elution profile of Sephadex G-50 column chromatography of breast cancer Gr-II sera
4.13 : Elution profile of Sephadex G-50 column chromatography of breast cancer Gr-III sera
4.14 : Elution profile of Q-Sepharose Ion exchange column Chromatography of first peak fraction of G 50 column of healthy control sera
4.15 : Elution profile of Q-Sepharose Ion exchange column Chromatography of first peak fraction of G 50 column of breast cancer Gr-I sera
4.16 : Elution profile of Q-Sepharose Ion exchange column Chromatography of first peak fraction of G 50 column of breast cancer Gr-II sera
4.17 : Elution profile of Q-Sepharose Ion exchange column Chromatography of first peak fraction of G 50 column of breast cancer Gr-III sera
4.18 : Q Sepharose fractions have affinity to IgM antibody by ELISA
4.19 : Standard curve of BSA
4.20 : Comparison of total HABPs concentration analyzed by ELISA
4.21 : Immune affinity purified human circulatory antigen

CHAPTER-4 TABLES
4.1 : Determination of immunoglobulin isotypes by ELISA method
4.2 : Comparison of total IgM concentration analyzed by ELISA
4.3 : Q Sepharose fractions have affinity to IgM antibody by ELISA
4.4 : Comparison of total HABPs concentration analyzed by ELISA

CHAPTER-5 FIGURES
5.1 : HA Competitive or inhibition ELISA
5.2 : Western blot analysis HA Competition experiments
5.3 : Western blot analysis of CD44 and cdc37 by direct reaction
5.4 : Immune pull down experiment with affinity purified IgM
antibody and cross reacted with mAb CD44 (HCAM) and cdc37 antibody

5.5 : Immune pull down experiment with mAb CD44 and cdc37 antibody and cross reacted with affinity purified IgM antibody

5.6 : Titers of anti-HABPs autoantibodies

5.7 : Dot plot shown levels of anti-HABPs autoantibodies

5.8 : ROC plots of HABPs autoantibody by EIA in patients with cancer and healthy control sera

5.9 : Immune blotting of anti-HABPs autoantibody in sera from patients with cancer and HC

CHAPTER-5 TABLES

5.1 : shown % of HA competition with ELISA